• Aguilar, E., , I. Auer, , M. Brunet, , T. Peterson, , and J. Wieringa, 2003: Guidelines on climate metadata and homogenization. World Meteorological Organization Tech. Doc. WMO/TD-1186, 50 pp. [Available online at https://www.wmo.int/datastat/documents/WCDMP-53_1.pdf.]

  • Blanchette, C. A., , C. M. Miner, , P. T. Raimondi, , D. Lohse, , K. E. K. Heady, , and B. R. Broitman, 2008: Biogeographical patterns of rocky intertidal communities along the Pacific coast of North America. J. Biogeogr., 35, 15931607, doi:10.1111/j.1365-2699.2008.01913.x.

    • Search Google Scholar
    • Export Citation
  • Bolton, J. J., , R. J. Anderson, , A. J. Smit, , and M. D. Rothman, 2012: South African kelp moving eastwards: The discovery of Ecklonia maxima (Osbeck) Papenfuss at De Hoop Nature Reserve on the south coast of South Africa. Afr. J. Mar. Sci., 34, 147151, doi:10.2989/1814232X.2012.675125.

    • Search Google Scholar
    • Export Citation
  • Broitman, B. R., , N. Mieszkowska, , B. Helmuth, , and C. A. Blanchette, 2008: Climate and recruitment of rocky shore intertidal invertebrates in the eastern North Atlantic. Ecology, 89 (Suppl.), S81S90, doi:10.1890/08-0635.1.

    • Search Google Scholar
    • Export Citation
  • Brown, O. B., , P. J. Minnett, , R. Evans, , E. Kearns, , K. Kilpatrick, , A. Kumar, , R. Sikorski, , and A. Závody, 1999: MODIS infrared sea surface temperature algorithm. Algorithm Theoretical Basis Doc. version 2.0, 91 pp. [Available online at modis.gsfc.nasa.gov/data/atbd/atbd_mod25.pdf.]

  • Chao, Y., , Z. Li, , J. D. Farrara, , and P. Hung, 2009: Blending sea surface temperatures from multiple satellites and in situ observations for coastal oceans. J. Atmos. Oceanic Technol., 26, 14151426, doi:10.1175/2009JTECHO592.1.

    • Search Google Scholar
    • Export Citation
  • Cliff, G., , S. F. J. Dudley, , and B. Davis, 1988: Sharks caught in the protective gill nets off Natal, South Africa. 1. The sandbar shark Carcharhinus plumbeus (Nardo). S. Afr. J. Mar. Sci., 7, 255265, doi:10.2989/025776188784379035.

    • Search Google Scholar
    • Export Citation
  • Couce, E., , A. Ridgwell, , and E. J. Hendy, 2012: Environmental controls on the global distribution of shallow-water coral reefs. J. Biogeogr., 39, 15081523, doi:10.1111/j.1365-2699.2012.02706.x.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., 2012: Nonlinear trends, long-range dependence, and climate noise properties of surface temperature. J. Climate, 25, 41724183, doi:10.1175/JCLI-D-11-00293.1.

    • Search Google Scholar
    • Export Citation
  • Freeman, E., and et al. , 2016: ICOADS release 3.0: A major update to the historical marine climate record. Int. J. Climatol., doi:10.1002/joc.4775, in press.

    • Search Google Scholar
    • Export Citation
  • Grant, O. M., , L. Tronina, , J. C. Ramalho, , C. Kurz Besson, , R. Lobo-Do-Vale, , J. Santos Pereira, , H. G. Jones, , and M. M. Chaves, 2010: The impact of drought on leaf physiology of Quercus suber L. trees: Comparison of an extreme drought event with chronic rainfall reduction. J. Exp. Bot., 61, 43614371, doi:10.1093/jxb/erq239.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D., and et al. , 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 159–254.

  • Hutchings, L., and et al. , 2009: The Benguela Current: An ecosystem of four components. Prog. Oceanogr., 83, 1532, doi:10.1016/j.pocean.2009.07.046.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp.

  • Karl, T. R., and et al. , 2015: Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 14691472, doi:10.1126/science.aaa5632.

    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., , N. A. Rayner, , R. O. Smith, , D. E. Parker, , and M. Saunby, 2011: Reassessing biases and other uncertainties in sea-surface temperature observations measured in situ since 1850, Part 1: Measurement and sampling uncertainties. J. Geophys. Res., 116, D14103, doi:10.1029/2010JD015218.

    • Search Google Scholar
    • Export Citation
  • Lathlean, J. A., , and T. E. Minchinton, 2012: Manipulating thermal stress on rocky shores to predict patterns of recruitment of marine invertebrates under a changing climate. Mar. Ecol. Prog. Ser., 467, 121136, doi:10.3354/meps09996.

    • Search Google Scholar
    • Export Citation
  • Martin, M., and et al. , 2012: Group for high resolution sea surface temperature (GHRSST) analysis fields inter-comparisons. Part 1: A GHRSST multi-product ensemble (GMPE). Deep-Sea Res. II, 77–80, 2130, doi:10.1016/j.dsr2.2012.04.013.

    • Search Google Scholar
    • Export Citation
  • Mead, A., and et al. , 2013: Human-mediated drivers of change—Impacts on coastal ecosystems and marine biota of South Africa. Afr. J. Mar. Sci., 35, 403425, doi:10.2989/1814232X.2013.830147.

    • Search Google Scholar
    • Export Citation
  • Ohring, G., , B. Wielicki, , R. Spencer, , B. Emery, , and R. Datla, 2005: Satellite instrument calibration for measuring global climate change: Report of a workshop. Bull. Amer. Meteor. Soc., 86, 13031313, doi:10.1175/BAMS-86-9-1303.

    • Search Google Scholar
    • Export Citation
  • Pinheiro, J., , and D. Bates, 2006: Mixed-Effects Models in S and S-PLUS. 1st ed. Springer Science & Business Media, 583 pp.

  • Qiu, C., , D. Wang, , H. Kawamura, , L. Guan, , and H. Qin, 2009: Validation of AVHRR and TMI-derived sea surface temperature in the northern South China Sea. Cont. Shelf Res., 29, 23582366, doi:10.1016/j.csr.2009.10.009.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929948, doi:10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., 2005: Chokka squid (Loligo vulgaris reynaudii) abundance linked to changes in South Africa’s Agulhas Bank ecosystem during spawning and the early life cycle. ICES J. Mar. Sci., 62, 3355, doi:10.1016/j.icesjms.2004.10.002.

    • Search Google Scholar
    • Export Citation
  • Rouault, M., , P. Penven, , and B. Pohl, 2009: Warming in the Agulhas Current system since the 1980’s. Geophys. Res. Lett., 36, L12602, doi:10.1029/2009GL037987.

    • Search Google Scholar
    • Export Citation
  • Rouault, M., , B. Pohl, , and P. Penven, 2010: Coastal oceanic climate change and variability from 1982 to 2009 around South Africa. Afr. J. Mar. Sci., 32, 237246, doi:10.2989/1814232X.2010.501563.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and et al. , 2008: Consistency of modelled and observed temperature trends in the tropical troposphere. Int. J. Climatol., 28, 17031722, doi:10.1002/joc.1756.

    • Search Google Scholar
    • Export Citation
  • Santos, F., , M. Gomez-Gesteira, , M. DeCastro, , and I. Alvarez, 2012: Differences in coastal and oceanic SST trends due to the strengthening of coastal upwelling along the Benguela current system. Cont. Shelf Res., 34, 7986, doi:10.1016/j.csr.2011.12.004.

    • Search Google Scholar
    • Export Citation
  • Scherrer, D., , and C. Körner, 2010: Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biol., 16, 26022613, doi:10.1111/j.1365-2486.2009.02122.x.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J., , D. B. Stephenson, , T. C. Bailey, , and J. Austin, 2010: Estimates of past and future ozone trends from multimodel simulations using a flexible smoothing spline methodology. J. Geophys. Res., 115, D00M12, doi:10.1029/2009JD013622.

    • Search Google Scholar
    • Export Citation
  • Smit, A. J., , M. Roberts, , R. J. Anderson, , F. Dufois, , S. F. J. Dudley, , T. G. Bornman, , J. Olbers, , and J. J. Bolton, 2013: A coastal seawater temperature dataset for biogeographical studies: Large biases between in situ and remotely-sensed data sets around the coast of South Africa. PLoS One, 8, e81944. doi:10.1371/journal.pone.0081944.

    • Search Google Scholar
    • Export Citation
  • Straub, S. C., , M. S. Thomsen, , and T. Wernberg, 2016: The dynamic biogeography of the Anthropocene: The speed of recent range shifts in seaweeds. Seaweed Phylogeography, Z.-M. Hu and C. Fraser, Eds., Springer, 63–93.

  • Tittensor, D. P., , C. Mora, , W. Jetz, , H. K. Lotze, , D. Ricard, , E. V. Berghe, , and B. Worm, 2010: Global patterns and predictors of marine biodiversity across taxa. Nature, 466, 10981101, doi:10.1038/nature09329.

    • Search Google Scholar
    • Export Citation
  • Tyberghein, L., , H. Verbruggen, , K. Pauly, , C. Troupin, , F. Mineur, , and O. De Clerck, 2012: Bio-ORACLE: A global environmental dataset for marine species distribution modelling. Global Ecol. Biogeogr., 21, 272281, doi:10.1111/j.1466-8238.2011.00656.x.

    • Search Google Scholar
    • Export Citation
  • Vazquez-Cuervo, J., , B. Dewitte, , T. M. Chin, , E. M. Armstrong, , S. Purca, , and E. Alburqueque, 2013: An analysis of SST gradients off the Peruvian coast: The impact of going to higher resolution. Remote Sens. Environ., 131, 7684, doi:10.1016/j.rse.2012.12.010.

    • Search Google Scholar
    • Export Citation
  • Von Storch, H., 1999: Misuses of statistical analysis in climate research. Analysis of Climate Variability, H. von Storch and A. Navarra Springer, Eds., 11–26.

  • Wernberg, T., and et al. , 2016: Climate-driven regime shift of a temperate marine ecosystem. Science, 353, 169172, doi:10.1126/science.aad8745.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Academic Press, 676 pp.

  • WMO, 2008: Guide to meteorological instruments and methods of observation. 7th ed. World Meteorological Organization WMO-8, 681 pp. [Available online at https://www.wmo.int/pages/prog/gcos/documents/gruanmanuals/CIMO/CIMO_Guide-7th_Edition-2008.pdf.]

  • Wood, S., 2006: Generalized Additive Models: An Introduction with R. CRC Press, 410 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 74 74 12
PDF Downloads 54 54 8

Climate Change in Coastal Waters: Time Series Properties Affecting Trend Estimation

View More View Less
  • 1 Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa
© Get Permissions
Restricted access

Abstract

In South Africa, 129 in situ temperature time series of up to 43 years are used for investigations of the thermal characteristics of coastal seawater. They are collected with handheld thermometers or underwater temperature recorders (UTRs) and are recorded at precisions from 0.5° to 0.001°C. Using the natural range of seasonal signals and variability for 84 of these time series, their length, decadal trend, and data precision were systematically varied before fitting generalized least squares (GLS) models to study the effect these variables have on trend detection. The variables that contributed most to accurate trend detection, in decreasing order, were time series length, decadal trend, variance, percentage of missing data (% NA), and measurement precision. Time series greater than 30 years in length are preferred and although larger decadal trends are modeled more accurately, modeled significance (p value) is largely affected by the variance present. The risk of committing both type-1 and type-2 errors increases when ≥5% NA is present. There is no appreciable effect on model accuracy between measurement precision of 0.1°–0.001°C. Measurement precisions of 0.5°C require longer time series to give equally accurate model results. The implication is that the thermometer time series in this dataset, and others around the world, must be at least two years longer than their UTR counterparts to be useful for decadal-scale climate change studies. Furthermore, adding older lower-precision UTR data to newer higher-precision UTR data within the same time series will increase their usefulness for this purpose.

Corresponding author e-mail: Robert Schlegel, 3503570@myuwc.ac.za

Abstract

In South Africa, 129 in situ temperature time series of up to 43 years are used for investigations of the thermal characteristics of coastal seawater. They are collected with handheld thermometers or underwater temperature recorders (UTRs) and are recorded at precisions from 0.5° to 0.001°C. Using the natural range of seasonal signals and variability for 84 of these time series, their length, decadal trend, and data precision were systematically varied before fitting generalized least squares (GLS) models to study the effect these variables have on trend detection. The variables that contributed most to accurate trend detection, in decreasing order, were time series length, decadal trend, variance, percentage of missing data (% NA), and measurement precision. Time series greater than 30 years in length are preferred and although larger decadal trends are modeled more accurately, modeled significance (p value) is largely affected by the variance present. The risk of committing both type-1 and type-2 errors increases when ≥5% NA is present. There is no appreciable effect on model accuracy between measurement precision of 0.1°–0.001°C. Measurement precisions of 0.5°C require longer time series to give equally accurate model results. The implication is that the thermometer time series in this dataset, and others around the world, must be at least two years longer than their UTR counterparts to be useful for decadal-scale climate change studies. Furthermore, adding older lower-precision UTR data to newer higher-precision UTR data within the same time series will increase their usefulness for this purpose.

Corresponding author e-mail: Robert Schlegel, 3503570@myuwc.ac.za
Save