• Andersen, S., , R. Tonboe, , L. Kaleschke, , G. Heygster, , and L. T. Pedersen, 2007: Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice. J. Geophys. Res., 112, C08004, doi:10.1029/2006JC003543.

    • Search Google Scholar
    • Export Citation
  • Bao, Q., and et al. , 2013: The Flexible Global Ocean–Atmosphere–Land System model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561576, doi:10.1007/s00376-012-2113-9.

    • Search Google Scholar
    • Export Citation
  • Behrens, L. K., , T. Martin, , V. A. Semenov, , and M. Latif, 2012: The Arctic sea ice in the CMIP3 climate model ensemble—Variability and anthropogenic change. Cryosphere Discuss., 6, 53175344, doi:10.5194/tcd-6-5317-2012.

    • Search Google Scholar
    • Export Citation
  • Bentsen, M., and et al. , 2013: The Norwegian Earth System Model, NorESM1-M—Part 1: Description and basic evaluation. Geosci. Model Dev., 6, 687720, doi:10.5194/gmdd-5-2843-2012.

    • Search Google Scholar
    • Export Citation
  • Bernstein, E. R., , C. A. Geiger, , T. L. DeLiberty, , and M. D. Lemcke-Stampone, 2015: Antarctic sea-ice thickness and volume estimates from ice charts between 1995 and 1998. Ann. Glaciol., 56, 383393, doi:10.3189/2015AoG69A763.

    • Search Google Scholar
    • Export Citation
  • Bi, D., and et al. , 2012a: The ACCESS coupled model: Description, control climate and preliminary validation. Aust. Meteor. Oceaonogr. J., 63 (1), 4164.

    • Search Google Scholar
    • Export Citation
  • Bi, D., and et al. , 2012b: ACCESS-OM: The ocean and sea ice core of the ACCESS coupled model. Aust. Meteor. Oceanogr. J., 63, 213232.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., , C. L. Parkinson, , P. Gloersen, , and H. J. Zwally, 1996 (updated yearly): Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, version 1. [1979–2010]. National Snow and Ice Data Center, doi:10.5067/8GQ8LZQVL0VL.

  • Collins, M., and et al. , 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Comiso, J., 2000 (updated 2015): Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, version 2. [1979–2010]. National Snow and Ice Data Center. [Available online at http://nsidc.org/data/docs/daac/nsidc0079_bootstrap_seaice.gd.html.]

  • Comiso, J., , D. Cavalieri, , C. Parkinson, , and P. Gloersen, 1997: Passive microwave algorithms for sea ice concentrations: A comparison of two techniques. Remote Sens. Environ., 60, 357384, doi:10.1016/S0034-4257(96)00220-9.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and et al. , 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, doi:10.1007/s00382-012-1636-1.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and et al. , 2012: GFDL’s ESM2 global coupled climate-carbon Earth System Models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, doi:10.1175/JCLI-D-11-00560.1.

    • Search Google Scholar
    • Export Citation
  • Fetterer, F., , K. Knowles, , W. Meier, , and M. Savoie, 2016 (updated daily): Sea ice index, version 2. National Snow and Ice Data Center, doi:10.7265/N5736NV7.

  • Gent, P. R., and et al. , 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Golub, G. H., , and C. F. Van Loan, 1996: Matrix Computations. 3rd ed. Johns Hopkins Studies in the Mathematical Sciences, Vol. 50, Johns Hopkins University Press, 694 pp.

  • Gordon, C., , C. Cooper, , C. A. Senior, , H. Banks, , J. M. Gregory, , T. C. Johns, , J. F. B. Mitchell, , and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147168, doi:10.1007/s003820050010.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and et al. , 2011: The GFDL CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. J. Climate, 24, 35203544, doi:10.1175/2011JCLI3964.1.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and et al. , 2012: EC-Earth V2.2: Description and validation of a new seamless Earth system prediction model. Climate Dyn., 39, 26112629, doi:10.1007/s00382-011-1228-5.

    • Search Google Scholar
    • Export Citation
  • Iversen, T., and et al. , 2013: The Norwegian Earth System Model, NorESM1-M – Part 2: Climate response and scenario projections. Geosci. Model Dev., 6, 389415, doi:10.5194/gmdd-5-2933-2012.

    • Search Google Scholar
    • Export Citation
  • Jeffrey, S. J., , L. D. Rotstayn, , M. A. Collier, , S. M. Dravitzki, , C. Hamalainen, , C. Moeseneder, , K. K. Wong, , and J. I. Syktus, 2013: Australia’s CMIP5 submission using the CSIRO Mk3.6 model. Aust. Meteor. Oceanogr. J., 63, 113.

    • Search Google Scholar
    • Export Citation
  • Kattsov, V. M., , V. Ryabinin, , J. Overland, , M. Serreze, , M. Visbeck, , J. Walsh, , W. Meier, , and X. Zhang, 2010: Arctic sea-ice change: A grand challenge of climate science. J. Glaciol., 56, 11151121.

    • Search Google Scholar
    • Export Citation
  • Komuro, Y., and et al. , 2012: Sea-ice in twentieth-century simulations by new MIROC coupled models: A comparison between models with high resolution and with ice thickness distribution. J. Meteor. Soc. Japan, 90A, 213232, doi:10.2151/jmsj.2012-A11.

    • Search Google Scholar
    • Export Citation
  • Markus, T., , and D. J. Cavalieri, 2000: An enhancement of the NASA Team sea ice algorithm. IEEE Trans. Geosci. Remote Sens., 38, 13871398, doi:10.1109/36.843033.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., and et al. , 2011: The HadGEM2 family of Met Office Unified Model Climate configurations. Geosci. Model Dev., 4, 723757, doi:10.5194/gmdd-4-765-2011.

    • Search Google Scholar
    • Export Citation
  • Massonnet, F., , T. Fichefet, , H. Goosse, , C. M. Bitz, , G. Philippon-Berthier, , M. M. Holland, , and P.-Y. Barriat, 2012: Constraining projections of summer Arctic sea ice. Cryosphere, 6, 13831394, doi:10.5194/tc-6-1383-2012.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and et al. , 2012: Tuning the climate of a global model. J. Adv. Model. Earth Syst., 4, M00A01, doi:10.1029/2012MS000154.

    • Search Google Scholar
    • Export Citation
  • Meier, W. N., 2005: Comparison of passive microwave ice concentration algorithm retrievals with AVHRR imagery in Arctic peripheral seas. IEEE Trans. Geosci. Remote Sens., 43, 13241337, doi:10.1109/TGRS.2005.846151.

    • Search Google Scholar
    • Export Citation
  • Meier, W. N., , and D. Notz, 2010: A note on the accuracy and reliability of satellite-derived passive microwave estimates of sea-ice extent. CliC Arctic Sea Ice Working Group Consensus Doc., World Climate Research Programme, 2 pp.

  • Notz, D., 2014: Sea-ice extent and its trend provide limited metric of model performance. Cryosphere, 8, 229243, doi:10.5194/tc-8-229-2014.

    • Search Google Scholar
    • Export Citation
  • Notz, D., 2015: How well must climate models agree with observations? Philos. Trans. Roy. Soc. London, 373A, 20140164, doi:10.1098/rsta.2014.0164.

    • Search Google Scholar
    • Export Citation
  • Notz, D., , F. A. Haumann, , H. Haak, , J. H. Jungclaus, , and J. Marotzke, 2013: Arctic sea-ice evolution as modeled by Max Planck Institute for meteorology’s Earth system model. J. Adv. Model. Earth Syst., 5, 173194, doi:10.1002/jame.20016.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., , K. Y. Vinnikov, , and D. J. Cavalieri, 2006: Evaluation of the simulation of the annual cycle of Arctic and Antarctic sea ice coverages by 11 major global climate models. J. Geophys. Res., 111, C07012, doi:10.1029/2005JC003408.

  • Pavlova, T., , V. Kattsov, , and V. Govorkova, 2011: Sea ice in CMIP5 models: Closer to reality? (in Russian). Proc. MGO, 564, 718.

  • Sakamoto, T., and et al. , 2012: MIROC4h—A new high-resolution atmosphere–ocean coupled general circulation model. J. Meteor. Soc. Japan, 90, 325359, doi:10.2151/jmsj.2012-301.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and et al. , 2011: Separating signal and noise in atmospheric temperature changes: The importance of timescale. J. Geophys. Res., 116, D22105, doi:10.1029/2011JD016263.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and et al. , 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, 141184, doi:10.1002/2013MS000265.

    • Search Google Scholar
    • Export Citation
  • Schneider, D., , D. Shea, , and C. Deser, 2012: Antarctic sea ice climatologies and trends in multiple data sets. 2012 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract C41B–0555.

  • Semenov, V. A., , T. Martin, , L. K. Behrens, , and M. Latif, 2015: Arctic sea ice area in CMIP3 and CMIP5 climate model ensembles—Variability and change. Cryosphere Discuss., 9, 10771131, doi:10.5194/tcd-9-1077-2015.

    • Search Google Scholar
    • Export Citation
  • Shu, Q., , Z. Song, , and F. Qiao, 2015: Assessment of sea ice simulations in the CMIP5 models. Cryosphere, 9, 399409, doi:10.5194/tc-9-399-2015.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., , V. Kattsov, , A. Barrett, , M. Serreze, , T. Pavlova, , M. Holland, , and W. N. Meier, 2012: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett., 39, L16502, doi:10.1029/2012GL052676.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and et al. , 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, doi:10.1007/s00382-011-1259-y.

    • Search Google Scholar
    • Export Citation
  • Volodin, E., , N. Dianskii, , and A. Gusev, 2010: Simulating present-day climate with the IN-MCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv. Atmos. Ocean. Phys., 46, 414431, doi:10.1134/S000143381004002X.

    • Search Google Scholar
    • Export Citation
  • Wang, M., , and J. E. Overland, 2012: A sea ice free summer Arctic within 30 years: An update from CMIP5 models. Geophys. Res. Lett., 39, L18501, doi:10.1029/2012GL052868.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., and et al. , 2011: MIROC-ESM: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev., 4, 845872, doi:10.5194/gmdd-4-1063-2011.

    • Search Google Scholar
    • Export Citation
  • Xin, X., , T. Wu, , J. Li, , Z. Wang, , W. Li, , and F. Wu, 2013: How well does BCC_CSM1.1 reproduce the 20th century climate change over China? Atmos. Ocean. Sci. Lett., 6, 2126.

    • Search Google Scholar
    • Export Citation
  • Yakovlev, N. G., 2009: Reproduction of the large-scale state of water and sea ice in the Arctic Ocean in 1948–2002: Part I. Numerical model. Izv. Atmos. Oceanic Phys., 45, 357371.

    • Search Google Scholar
    • Export Citation
  • Zunz, V., , H. Goosse, , and F. Massonnet, 2013: How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent? Cryosphere, 7, 451468, doi:10.5194/tc-7-451-2013.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 50 50 10
PDF Downloads 26 26 4

Moving beyond the Total Sea Ice Extent in Gauging Model Biases

View More View Less
  • 1 Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California, and Nansen Environmental and Remote Sensing Center, and Bjerknes Centre for Climate Research, Bergen, Norway
  • | 2 Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California
  • | 3 NASA Goddard Institute for Space Studies, Columbia University, New York, New York
© Get Permissions
Restricted access

Abstract

Reproducing characteristics of observed sea ice extent remains an important climate modeling challenge. This study describes several approaches to improve how model biases in total sea ice distribution are quantified, and applies them to historically forced simulations contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The quantity of hemispheric total sea ice area, or some measure of its equatorward extent, is often used to evaluate model performance. A new approach is introduced that investigates additional details about the structure of model errors, with an aim to reduce the potential impact of compensating errors when gauging differences between simulated and observed sea ice. Using multiple observational datasets, several new methods are applied to evaluate the climatological spatial distribution and the annual cycle of sea ice cover in 41 CMIP5 models. It is shown that in some models, error compensation can be substantial, for example resulting from too much sea ice in one region and too little in another. Error compensation tends to be larger in models that agree more closely with the observed total sea ice area, which may result from model tuning. The results herein suggest that consideration of only the total hemispheric sea ice area or extent can be misleading when quantitatively comparing how well models agree with observations. Further work is needed to fully develop robust methods to holistically evaluate the ability of models to capture the finescale structure of sea ice characteristics; however, the “sector scale” metric used here aids in reducing the impact of compensating errors in hemispheric integrals.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0026.s1.

Corresponding author address: Detelina P. Ivanova, Nansen Environmental and Remote Sensing Center, Thormøhlens gate 47, N-5006, Bergen, Norway. E-mail: detelina.ivanova@nersc.no

Abstract

Reproducing characteristics of observed sea ice extent remains an important climate modeling challenge. This study describes several approaches to improve how model biases in total sea ice distribution are quantified, and applies them to historically forced simulations contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The quantity of hemispheric total sea ice area, or some measure of its equatorward extent, is often used to evaluate model performance. A new approach is introduced that investigates additional details about the structure of model errors, with an aim to reduce the potential impact of compensating errors when gauging differences between simulated and observed sea ice. Using multiple observational datasets, several new methods are applied to evaluate the climatological spatial distribution and the annual cycle of sea ice cover in 41 CMIP5 models. It is shown that in some models, error compensation can be substantial, for example resulting from too much sea ice in one region and too little in another. Error compensation tends to be larger in models that agree more closely with the observed total sea ice area, which may result from model tuning. The results herein suggest that consideration of only the total hemispheric sea ice area or extent can be misleading when quantitatively comparing how well models agree with observations. Further work is needed to fully develop robust methods to holistically evaluate the ability of models to capture the finescale structure of sea ice characteristics; however, the “sector scale” metric used here aids in reducing the impact of compensating errors in hemispheric integrals.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0026.s1.

Corresponding author address: Detelina P. Ivanova, Nansen Environmental and Remote Sensing Center, Thormøhlens gate 47, N-5006, Bergen, Norway. E-mail: detelina.ivanova@nersc.no

Supplementary Materials

    • Supplemental Materials (PDF 5.09 MB)
Save