• Bader, J., , and M. Latif, 2003: The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation. Geophys. Res. Lett., 30, 2169, doi:10.1029/2003GL018426.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., , and A. Giannini, 2006: Robust Sahel drying in response to late 20th century forcings. Geophys. Res. Lett., 33, L11706, doi:10.1029/2006GL026067.

    • Search Google Scholar
    • Export Citation
  • Bichet, A., , M. Wild, , D. Folini, , and C. Schaer, 2011: Global precipitation response to changing forcing since 1870. Atmos. Chem. Phys., 11, 99619970, doi:10.5194/acp-11-9961-2011.

    • Search Google Scholar
    • Export Citation
  • Bichet, A., , D. Folini, , M. Wild, , and C. Schaer, 2014: Enhanced central European summer precipitation in the late 19th century: A link to the tropics. Quart. J. Roy. Meteor. Soc., 140, 111123, doi:10.1002/qj.2111.

    • Search Google Scholar
    • Export Citation
  • Bichet, A., , P. J. Kushner, , L. Mudryk, , L. Terray, , and J. C. Fyfe, 2015: Estimating the anthropogenic sea surface temperature response using pattern scaling. J. Climate, 28, 37513763, doi:10.1175/JCLI-D-14-00604.1.

    • Search Google Scholar
    • Export Citation
  • Booth, B. B., and et al. , 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232, doi:10.1038/nature10946.

    • Search Google Scholar
    • Export Citation
  • Caminade, C., , and L. Terray, 2010: Twentieth century Sahel rainfall variability as simulated by the ARPEGE AGCM, and future changes. Climate Dyn., 35, 7594, doi:10.1007/s00382-009-0545-4.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., , and P. D. Sardeshmukh, 2009: Oceanic influences on recent continental warming. Climate Dyn., 32, 333342, doi:10.1007/s00382-008-0448-9.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Climate Dyn., 41, 633646, doi:10.1007/s00382-012-1446-5.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , J. C. Fyfe, , S.-P. Xie, , and X. Dai, 2015: Decadal modulation of global surface temperature by internal climate variability. Nat. Climate Change, 5, 555559, doi:10.1038/nclimate2605.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , and A. S. Phillips, 2009: Atmospheric circulation trends, 1950–2000: The relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J. Climate, 22, 396413, doi:10.1175/2008JCLI2453.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , A. S. Phillips, , M. A. Alexander, , and B. V. Smoliak, 2014: Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 22712296, doi:10.1175/JCLI-D-13-00451.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , R. A. Tomas, , and L. Sun, 2015: The role of ocean–atmosphere coupling in the zonal-mean atmospheric response to arctic sea ice loss. J. Climate, 28, 21682186, doi:10.1175/JCLI-D-14-00325.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , L. Terray, , and A. S. Phillips, 2016: Forced and internal components of winter air temperature trends over North America during the past 50 years: Mechanisms and implications. J. Climate, 29, 22372258, doi:10.1175/JCLI-D-15-0304.1.

    • Search Google Scholar
    • Export Citation
  • Fletcher, C. G., , and P. Kushner, 2013: Linear interference and the northern annular mode response to tropical SST forcing: Sensitivity to model configuration. J. Geophys. Res. Atmos., 118, 42674279, doi:10.1002/jgrd.50385.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., 1992: AMIP: The atmospheric model intercomparison project. Bull. Amer. Meteor. Soc., 73, 19621970, doi:10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., , R. Saravanan, , and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302, 10271030, doi:10.1126/science.1089357.

    • Search Google Scholar
    • Export Citation
  • Harris, I., , P. D. Jones, , T. J. Osborn, , and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and et al. , 2005: Simulation of Sahel drought in the 20th and 21st centuries. Proc. Natl. Acad. Sci. USA, 102, 17 89117 896, doi:10.1073/pnas.0509057102.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., , J. Hurrell, , J. Eischeid, , and A. Phillips, 2006: Detection and attribution of twentieth-century northern and southern African rainfall change. J. Climate, 19, 39894008, doi:10.1175/JCLI3842.1.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., , A. Kumar, , J. Eischeid, , and B. Jha, 2008: What is causing the variability in global mean land temperature? Geophys. Res. Lett., 35, L23712, doi:10.1029/2008GL035984.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., and et al. , 2011: On North American decadal climate for 2011–20. J. Climate, 24, 45194528, doi:10.1175/2011JCLI4137.1.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., , J. J. Hack, , D. Shea, , J. M. Caron, , and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, doi:10.1175/2008JCLI2292.1.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., , D. H. Lister, , T. J. Osborn, , C. Harpham, , M. Salmon, , and C. P. Morice, 2012: Hemispheric and large-scale land surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res., 117, D05127, doi:10.1029/2011JD017139.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and et al. , 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, doi:10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1997: Interactions between global SST anomalies and the midlatitude atmospheric circulation. Bull. Amer. Meteor. Soc., 78, 2133, doi:10.1175/1520-0477(1997)078<0021:IBGSAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , and T. L. Delworth, 2005: Oceanic forcing of the late 20th century Sahel drought. Geophys. Res. Lett., 32, L22706, doi:10.1029/2005GL022980.

    • Search Google Scholar
    • Export Citation
  • Lu, J., , G. Chen, , and D. M. W. Frierson, 2008: Response of the zonal mean atmospheric circulation to El Niño versus global warming. J. Climate, 21, 58355851, doi:10.1175/2008JCLI2200.1.

    • Search Google Scholar
    • Export Citation
  • McCabe, G., , M. A. Palecki, , and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141, doi:10.1073/pnas.0306738101.

    • Search Google Scholar
    • Export Citation
  • Mohino, E., , S. Janicot, , and J. Bader, 2011: Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Climate Dyn., 37, 419440, doi:10.1007/s00382-010-0867-2.

    • Search Google Scholar
    • Export Citation
  • Mudryk, L. R., , P. J. Kushner, , and C. Derksen, 2014: Interpreting observed Northern Hemisphere snow trends with large ensembles of climate simulations. Climate Dyn., 43, 345359, doi:10.1007/s00382-013-1954-y.

    • Search Google Scholar
    • Export Citation
  • Mudryk, L. R., , C. Derksen, , P. J. Kushner, , and R. Brown, 2015: Characterization of Northern Hemisphere snow water equivalent datasets, 1981–2010. J. Climate, 28, 80378051, doi:10.1175/JCLI-D-15-0229.1.

    • Search Google Scholar
    • Export Citation
  • Park, D.-S. R., , S. Lee, , and S. B. Feldstein, 2015: Attribution of the recent winter sea-ice decline over the Atlantic sector of the Arctic Ocean. J. Climate, 28, 40274033, doi:10.1175/JCLI-D-15-0042.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and et al. , 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., , T. M. L. Wigley, , M. E. Schlesinger, , and J. F. B. Mitchell, 1990: Developing climate scenarios from equilibrium GCM results. Max Planck Institute for Meteorology Rep. 47, 29 pp.

  • Schubert, S. D., , M. J. Suarez, , P. J. Pegion, , R. D. Koster, , and J. T. Bacmeister, 2004: Causes of long-term drought in the U.S. Great Plains. J. Climate, 17, 485503, doi:10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., , and I. Simmonds, 2010: The central role of diminishing sea ice in recent arctic temperature amplification. Nature, 464, 13341337, doi:10.1038/nature09051.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , Y. Kushnir, , C. Herweijer, , N. Naik, , and J. Velez, 2005: Modeling the tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18, 40654091, doi:10.1175/JCLI3522.1.

    • Search Google Scholar
    • Export Citation
  • Shin, S.-I., , and P. D. Sardeshmukh, 2011: Critical influence of the pattern of tropical ocean warming on remote climate trends. Climate Dyn., 36, 15771591, doi:10.1007/s00382-009-0732-3.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and et al. , 2016: Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Climate Change, 6, 936940, doi:10.1038/nclimate3058.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., , and M. Newman, 2012: Reconciling disparate twentieth-century Indo-Pacific Ocean temperature trends in the instrumental record. Nat. Climate Change, 2, 691699, doi:10.1038/nclimate1591.

    • Search Google Scholar
    • Export Citation
  • Takala, M., , K. Luojus, , J. Pulliainen, , C. Derksen, , L. Lemmetyinen, , J.-P. Karna, , and J. Koskinen, 2011: Estimating Northern Hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens. Environ., 115, 35173529, doi:10.1016/j.rse.2011.08.014.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., , and J. M. Arblaster, 2014: Pattern scaling: Its strengths and limitations, and an update on the latest model simulations. Climatic Change, 122, 459471, doi:10.1007/s10584-013-1032-9.

    • Search Google Scholar
    • Export Citation
  • Ting, M., , Y. Kushnir, , S. Richard, , and C. Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 14691481, doi:10.1175/2008JCLI2561.1.

    • Search Google Scholar
    • Export Citation
  • Ting, M., , Y. Kushnir, , R. Seager, , and C. Li, 2011: Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys. Res. Lett., 38, L17705, doi:10.1029/2011GL048712.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and et al. , 2009: Attribution of the seasonality and regionality in climate trends over the United States during 1950–2000. J. Climate, 22, 25712590, doi:10.1175/2008JCLI2359.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and et al. , 2012: Enhanced warming over the global subtropical western boundary currents. Nat. Climate Change, 2, 161166, doi:10.1038/nclimate1353.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , C. Deser, , G. A. Vecchi, , J. Ma, , H. Teng, , and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, doi:10.1175/2009JCLI3329.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., , and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, doi:10.1029/2006GL026267.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 24 24 1
PDF Downloads 20 20 1

Estimating the Continental Response to Global Warming Using Pattern-Scaled Sea Surface Temperatures and Sea Ice

View More View Less
  • 1 CNRS-LGGE/MEOM, Grenoble, France
  • | 2 Department of Physics, University of Toronto, Toronto, Ontario, Canada
© Get Permissions
Restricted access

Abstract

Better constraining the continental climate response to anthropogenic forcing is essential to improve climate projections. In this study, pattern scaling is used to extract, from observations, the patterned response of sea surface temperature (SST) and sea ice concentration (SICE) to anthropogenically dominated long-term global warming. The SST response pattern includes a warming of the tropical Indian Ocean, the high northern latitudes, and the western boundary currents. The SICE pattern shows seasonal variations of the main locations of sea ice loss. These SST–SICE response patterns are used to drive an ensemble of an atmospheric general circulation model, the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 5 (CAM5), over the period 1980–2010 along with a standard AMIP ensemble using observed SST—SICE. The simulations enable attribution of a variety of observed trends of continental climate to global warming. On the one hand, the warming trends observed in all seasons across the entire Northern Hemisphere extratropics result from global warming, as does the snow loss observed over the northern midlatitudes and northwestern Eurasia. On the other hand, 1980–2010 precipitation trends observed in winter over North America and in summer over Africa result from the recent decreasing phase of the Pacific decadal oscillation and the recent increasing phase of the Atlantic multidecadal oscillation, respectively, which are not part of the global warming signal. The method holds promise for near-term decadal climate prediction but as currently framed cannot distinguish regional signals associated with oceanic internal variability from aerosol forcing and other sources of short-term forcing.

Corresponding author address: Adeline Bichet, CNRS-LGGE/MEOM, 38041 Grenoble, France. E-mail: adeline.bichet@lgge.obs.ujf-grenoble.fr

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0032.s1.

Abstract

Better constraining the continental climate response to anthropogenic forcing is essential to improve climate projections. In this study, pattern scaling is used to extract, from observations, the patterned response of sea surface temperature (SST) and sea ice concentration (SICE) to anthropogenically dominated long-term global warming. The SST response pattern includes a warming of the tropical Indian Ocean, the high northern latitudes, and the western boundary currents. The SICE pattern shows seasonal variations of the main locations of sea ice loss. These SST–SICE response patterns are used to drive an ensemble of an atmospheric general circulation model, the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 5 (CAM5), over the period 1980–2010 along with a standard AMIP ensemble using observed SST—SICE. The simulations enable attribution of a variety of observed trends of continental climate to global warming. On the one hand, the warming trends observed in all seasons across the entire Northern Hemisphere extratropics result from global warming, as does the snow loss observed over the northern midlatitudes and northwestern Eurasia. On the other hand, 1980–2010 precipitation trends observed in winter over North America and in summer over Africa result from the recent decreasing phase of the Pacific decadal oscillation and the recent increasing phase of the Atlantic multidecadal oscillation, respectively, which are not part of the global warming signal. The method holds promise for near-term decadal climate prediction but as currently framed cannot distinguish regional signals associated with oceanic internal variability from aerosol forcing and other sources of short-term forcing.

Corresponding author address: Adeline Bichet, CNRS-LGGE/MEOM, 38041 Grenoble, France. E-mail: adeline.bichet@lgge.obs.ujf-grenoble.fr

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0032.s1.

Supplementary Materials

    • Supplemental Materials (DOCX 576.25 KB)
Save