• Anderson, W., , A. Gnanadesikan, , R. Hallberg, , J. Dunne, , and B. Samuels, 2007: Impact of ocean color on the maintenance of the Pacific cold tongue. Geophys. Res. Lett., 34, L11609, doi:10.1029/2007GL030100.

    • Search Google Scholar
    • Export Citation
  • Blough, N. V., , and R. Del Vecchio, 2002: Chromophoric DOM in the coastal environment. Biogeochemistry of Marine Dissolved Organic Matter, D. A. Hansell and C. A. Carlson, Eds., Academic Press, 509–546.

  • Broccoli, A. J., , and S. A. Klein, 2010: Comment on “Observational and model evidence for positive low-level cloud feedback.” Science, 329, 277277, doi:10.1126/science.1186796.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., , R. Burgman, , and J. R. Norris, 2009: Observational and model evidence for positive low-level cloud feedback. Science, 325, 460464, doi:10.1126/science.1171255.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., , C. L. Parkinson, , R. Gersten, , and L. Stock, 2008: Accelerated decline in the arctic sea ice cover. Geophys. Res. Lett., 35, L01703, doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Dutkiewicz, S., , A. E. Hickman, , O. Jahn, , W. W. Gregg, , C. B. Mouw, , and M. J. Follows, 2015: Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model. Biogeosciences, 12, 44474481, doi:10.5194/bg-12-4447-2015.

    • Search Google Scholar
    • Export Citation
  • Galbraith, E. D., , A. Gnanadesikan, , J. P. Dunne, , and M. R. Hiscock, 2010: Regional impacts of iron-light colimitation in a global biogeochemical model. Biogeosciences, 7, 10431064, doi:10.5194/bg-7-1043-2010.

    • Search Google Scholar
    • Export Citation
  • Galbraith, E. D., and et al. , 2011: Climate variability and radiocarbon in the CM2Mc Earth system model. J. Climate, 24, 42304254, doi:10.1175/2011JCLI3919.1.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., , and W. G. Anderson, 2009: Ocean water clarity and the ocean general circulation in a coupled climate model. J. Phys. Oceanogr., 39, 314332, doi:10.1175/2008JPO3935.1.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and et al. , 2005: Formulation of an ocean model for global climate simulations. Ocean Sci., 1, 4579, doi:10.5194/os-1-45-2005.

    • Search Google Scholar
    • Export Citation
  • Hill, V. J., 2008: Impacts of chromophoric dissolved organic material on surface ocean heating in the Chukchi Sea. J. Geophys. Res., 113, C07024, doi:10.1029/2007JC004119.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., , M. C. Serreze, , and J. Stroeve, 2010: The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models. Climate Dyn., 34, 185200, doi:10.1007/s00382-008-0493-4.

    • Search Google Scholar
    • Export Citation
  • Jackson, J. M., , E. C. Carmack, , F. A. McLaughlin, , S. E. Allen, , and R. G. Ingram, 2010: Identification, characterization, and change of the near-surface temperature maximum in the Canada Basin, 1993–2008. J. Geophys. Res., 115, C05021, doi:10.1029/2009JC005265.

    • Search Google Scholar
    • Export Citation
  • Jin, M., , C. Deal, , S. H. Lee, , S. Elliott, , E. Hunke, , M. Maltrud, , and N. Jeffery, 2012: Investigation of Arctic sea ice and ocean primary production for the period 1992–2007 using a 3-D global ice–ocean ecosystem model. Deep-Sea Res. II, 81–84, 2835, doi:10.1016/j.dsr2.2011.06.003.

    • Search Google Scholar
    • Export Citation
  • Kim, G. E., , M.-A. Pradal, , and A. Gnanadesikan, 2015: Quantifying the biological impact of surface ocean light attenuation by colored detrital matter in an ESM using a new optical parameterization. Biogeosciences, 12, 51195132, doi:10.5194/bg-12-5119-2015.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., , J. C. McWilliams, , and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Laxon, S., , N. Peacock, , and D. Smith, 2003: High interannual variability of sea ice thickness in the arctic region. Nature, 425, 947950, doi:10.1038/nature02050.

    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., , G. Madec, , L. Bopp, , C. Menkes, , O. Aumont, , and P. Cadule, 2009: Biophysical feedbacks in the Arctic Ocean using an Earth system model. Geophys. Res. Lett., 36, L21602, doi:10.1029/2009GL040145.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., , and J. Zhang, 2005: The thinning of Arctic sea ice, 1988–2003: Have we passed a tipping point? J. Climate, 18, 48794894, doi:10.1175/JCLI3587.1.

    • Search Google Scholar
    • Export Citation
  • Liu, J., , J. A. Curry, , and Y. Hu, 2004: Recent arctic sea ice variability: Connections to the Arctic Oscillation and the ENSO. Geophys. Res. Lett., 31, L09211, doi:10.1029/2004GL019858.

    • Search Google Scholar
    • Export Citation
  • Manizza, M., , C. Le Quéré, , A. J. Watson, , and E. T. Buitenhuis, 2005: Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model. Geophys. Res. Lett., 32, L05603, doi:10.1029/2004GL020778.

    • Search Google Scholar
    • Export Citation
  • Matsuoka, A., , Y. Huot, , K. Shimada, , S. I. Saitoh, , and M. Babin, 2007: Bio-optical characteristics of the western Arctic Ocean: Implications for ocean color algorithms. Can. J. Remote Sens., 33, 503518, doi:10.5589/m07-059.

    • Search Google Scholar
    • Export Citation
  • Matsuoka, A., , V. Hill, , Y. Huot, , M. Babin, , and A. Bricaud, 2011: Seasonal variability in the light absorption properties of western arctic waters: Parameterization of the individual components of absorption for ocean color applications. J. Geophys. Res., 116, C02007, doi:10.1029/2009JC005594.

    • Search Google Scholar
    • Export Citation
  • Mitchell, B. G., 1992: Predictive bio-optical relationships for polar oceans and marginal ice zones. J. Mar. Syst., 3, 91105, doi:10.1016/0924-7963(92)90032-4.

    • Search Google Scholar
    • Export Citation
  • Mobley, C. D., 2011: Fast light calculations for ocean ecosystem and inverse models. Opt. Express, 19, 18 92718 944, doi:10.1364/OE.19.018927.

    • Search Google Scholar
    • Export Citation
  • Mobley, C. D., , F. Chai, , P. Xiu, , and L. K. Sundman, 2015: Impact of improved light calculations on predicted phytoplankton growth and heating in an idealized upwelling-downwelling channel geometry. J. Geophys. Res. Oceans, 120, 875892, doi:10.1002/2014JC010588.

    • Search Google Scholar
    • Export Citation
  • NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group, 2016: Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua inherent optical properties data; 2014 reprocessing. NASA OB.DAAC, doi:10.5067/AQUA/MODIS/L3B/IOP/2014.

  • Oschlies, A., 2004: Feedbacks of biotically induced radiative heating on upper-ocean heat budget, circulation, and biological production in a coupled ecosystem-circulation model. J. Geophys. Res., 109, C12031, doi:10.1029/2004JC002430.

    • Search Google Scholar
    • Export Citation
  • Patara, L., , M. Vichi, , S. Masina, , P. Fogli, , and E. Manzini, 2012: Global response to solar radiation absorbed by phytoplankton in a coupled climate model. Climate Dyn., 39, 19511968, doi:10.1007/s00382-012-1300-9.

    • Search Google Scholar
    • Export Citation
  • Pegau, W. S., 2002: Inherent optical properties of the central arctic surface waters. J. Geophys. Res., 107, 8035, doi:10.1029/2000JC000382.

    • Search Google Scholar
    • Export Citation
  • Peterson, B. J., , R. M. Holmes, , J. W. McClelland, , C. J. Vörösmarty, , R. B. Lammers, , A. I. Shiklomanov, , I. A. Shiklomanov, , and S. Rahmstorf, 2002: Increasing river discharge to the Arctic Ocean. Science, 298, 21712173, doi:10.1126/science.1077445.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and et al. , 2000: Observational evidence of recent change in the northern high-latitude environment. Climatic Change, 46, 159207, doi:10.1023/A:1005504031923.

    • Search Google Scholar
    • Export Citation
  • Stedmon, C., , R. Amon, , A. Rinehart, , and S. Walker, 2011: The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: Pan arctic trends and differences. Mar. Chem., 124, 108118, doi:10.1016/j.marchem.2010.12.007.

    • Search Google Scholar
    • Export Citation
  • Troen, I. B., , and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, doi:10.1007/BF00122760.

    • Search Google Scholar
    • Export Citation
  • Wetzel, P., , E. Maier-Reimer, , M. Botzet, , J. Jungclaus, , N. Keenlyside, , and M. Latif, 2006: Effects of ocean biology on the penetrative radiation in a coupled climate model. J. Climate, 19, 39733987, doi:10.1175/JCLI3828.1.

    • Search Google Scholar
    • Export Citation
  • Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17, 525531, doi:10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 10
PDF Downloads 29 29 8

Increased Surface Ocean Heating by Colored Detrital Matter (CDM) Linked to Greater Northern Hemisphere Ice Formation in the GFDL CM2Mc ESM

View More View Less
  • 1 Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland
© Get Permissions
Restricted access

Abstract

Recent observations of Arctic Ocean optical properties have found that colored dissolved organic matter (CDOM) is of primary importance in determining the nonwater absorption coefficient of light in this region. Although CDOM is an important optical constituent in the Arctic Ocean, it is not included in most of the current generation of Earth system models (ESMs). In this study, model runs were conducted with and without light attenuation by colored detrital matter (CDM), the combined optical contribution of CDOM and nonalgal particles. The fully coupled GFDL CM2 with Modular Ocean Model version 4p1 (MOM4p1) at coarse resolution (CM2Mc) ESM was used to examine the differences in heating and ice formation in the high northern latitudes. The annual cycle of sea surface temperature (SST) is amplified in the model run where the optical attenuation by CDM is included. Annually averaged integrated ice mass is 5% greater and total ice extent is 6% greater owing to colder wintertime SSTs. Differences in ocean heating (i.e., temperature tendency) between the two model runs are well represented by the combined changes in heating by penetrating shortwave radiation, mixing, and surface heat fluxes in the upper 100 m. Shortwave radiation is attenuated closer to the surface, which reduces heating below 10 m during summer months. Mixing entrains colder waters into the mixed layer during the autumn and winter months. Increased cloudiness and ice thickness in the model run with CDM reduces incoming shortwave radiation.

Corresponding author address: Grace E. Kim, Department of Earth and Planetary Sciences, Johns Hopkins University, 301 Olin Hall, 3400 N. Charles Street, Baltimore, MD 21218. E-mail: gracekim@jhu.edu

Abstract

Recent observations of Arctic Ocean optical properties have found that colored dissolved organic matter (CDOM) is of primary importance in determining the nonwater absorption coefficient of light in this region. Although CDOM is an important optical constituent in the Arctic Ocean, it is not included in most of the current generation of Earth system models (ESMs). In this study, model runs were conducted with and without light attenuation by colored detrital matter (CDM), the combined optical contribution of CDOM and nonalgal particles. The fully coupled GFDL CM2 with Modular Ocean Model version 4p1 (MOM4p1) at coarse resolution (CM2Mc) ESM was used to examine the differences in heating and ice formation in the high northern latitudes. The annual cycle of sea surface temperature (SST) is amplified in the model run where the optical attenuation by CDM is included. Annually averaged integrated ice mass is 5% greater and total ice extent is 6% greater owing to colder wintertime SSTs. Differences in ocean heating (i.e., temperature tendency) between the two model runs are well represented by the combined changes in heating by penetrating shortwave radiation, mixing, and surface heat fluxes in the upper 100 m. Shortwave radiation is attenuated closer to the surface, which reduces heating below 10 m during summer months. Mixing entrains colder waters into the mixed layer during the autumn and winter months. Increased cloudiness and ice thickness in the model run with CDM reduces incoming shortwave radiation.

Corresponding author address: Grace E. Kim, Department of Earth and Planetary Sciences, Johns Hopkins University, 301 Olin Hall, 3400 N. Charles Street, Baltimore, MD 21218. E-mail: gracekim@jhu.edu
Save