• Chang, C.-P., , S. C. Hou, , H. C. Kuo, , and G. T. J. Chen, 1998: The development of an intense East Asian summer monsoon disturbance with strong vertical coupling. Mon. Wea. Rev., 126, 26922712, doi:10.1175/1520-0493(1998)126<2692:TDOAIE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., , Y. Lei, , C.-H. Sui, , X. Lin, , and F. Ren, 2012: Tropical cyclone and extreme rainfall trends in East Asian summer monsoon since mid-20th century. Geophys. Res. Lett., 39, L18702, doi:10.1029/2012GL052945.

    • Search Google Scholar
    • Export Citation
  • Chen, G. T.-J., , and C.-C. Yu, 1988: Study of low-level jet and extremely heavy rainfall over northern Taiwan in the mei-yu season. Mon. Wea. Rev., 116, 884891, doi:10.1175/1520-0493(1988)116<0884:SOLLJA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, G. T.-J., , C.-C. Wang, , and D. T.-W. Lin, 2005: Characteristics of low-level jets over northern Taiwan in mei-yu season and their relationship to heavy rain events. Mon. Wea. Rev., 133, 2043, doi:10.1175/MWR-2813.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G. T.-J., , C.-C. Wang, , and L.-F. Lin, 2006: A diagnostic study of a retreating mei-yu front and the accompanying low-level jet formation and intensification. Mon. Wea. Rev., 134, 874896, doi:10.1175/MWR3099.1.

    • Search Google Scholar
    • Export Citation
  • Chen, H., , R. Yu, , J. Li, , W. Yuan, , and T. Zhou, 2010: Why nocturnal long-duration rainfall presents an eastward-delayed diurnal phase of rainfall down the Yangtze River valley. J. Climate, 23, 905917, doi:10.1175/2009JCLI3187.1.

    • Search Google Scholar
    • Export Citation
  • Chen, L. S., , Y. Li, , and Z. Q. Cheng, 2010: An overview of research and forecasting on rainfall associated with landfalling tropical cyclones. Adv. Atmos. Sci., 27, 967976, doi:10.1007/s00376-010-8171-y.

    • Search Google Scholar
    • Export Citation
  • Dai, A., , F. Giorgi, , and K. E. Trenberth, 1999: Observed and model‐simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104, 63776402, doi:10.1029/98JD02720.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., 1994: Monsoons over China. Kluwer Academic, 419 pp.

  • Ding, Y., , and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, doi:10.1007/s00703-005-0125-z.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., , and D. R. Sikka, 2006: Synoptic systems and weather. The Asian Monsoon, B. Wang, Ed., Praxis, 131–201.

  • Ding, Y., , H. Li, , Z. Cai, , and J. Li, 1980: On the physical conditions of occurrence of heavy rainfall and severe convective weather. Proc. Eighth Conf. on Weather Forecasting and Analysis, Denver, CO, Amer. Meteor. Soc., 371–377.

  • He, H., , and F. Zhang, 2010: Diurnal variations of warm-season precipitation over northern China. Mon. Wea. Rev., 138, 10171025, doi:10.1175/2010MWR3356.1.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., , L. Cheng, , and R. A. Anthes, 1986: Mesoscale analyses of the Sichuan flood catastrophe, 11–15 July 1981. Mon. Wea. Rev., 114, 19842003, doi:10.1175/1520-0493(1986)114<1984:MAOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, J., , R. Yu, , and T. Zhou, 2008: Seasonal variation of the diurnal cycle of rainfall in southern contiguous China. J. Climate, 21, 60366043, doi:10.1175/2008JCLI2188.1.

    • Search Google Scholar
    • Export Citation
  • Li, J., , R. Yu, , and W. Sun, 2013: Duration and seasonality of hourly extreme rainfall in the central eastern China. Acta Meteor. Sin., 27, 799807, doi:10.1007/s13351-013-0604-y.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., , and Y. Chen, 2015: Investigation of the predictability and physical mechanisms of an extreme-rainfall-producing mesoscale convective system along the Meiyu front in East China: An ensemble approach. J. Geophys. Res. Atmos., 120, 10 59310 618, doi:10.1002/2015JD023584.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., , C. F. Chappell, , and L. R. Hoxit, 1979: Synoptic and meso-α scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123, doi:10.1175/1520-0477-60.2.115.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., , D. Yan, , and Y. Zhang, 2013: General features of squall lines in east China. Mon. Wea. Rev., 141, 16291647, doi:10.1175/MWR-D-12-00208.1.

    • Search Google Scholar
    • Export Citation
  • Min, S.-K., , X. Zhang, , F. W. Zwiers, , and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378381, doi:10.1038/nature09763.

    • Search Google Scholar
    • Export Citation
  • Pontrelli, M. D., , G. Bryan, , and J. M. Fritsch, 1999: The Madison County, Virginia, flash flood of 27 June 1995. Wea. Forecasting, 14, 384404, doi:10.1175/1520-0434(1999)014<0384:TMCVFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ren, F., , G. Wu, , W. Dong, , X. Wang, , Y. Wang, , W. Ai, , and W. Li, 2006: Changes in tropical cyclone precipitation over China. Geophys. Res. Lett., 33, L20702, doi:10.1029/2006GL02795.

    • Search Google Scholar
    • Export Citation
  • Ren, F., , Y. Wang, , X. Wang, , and W. Li, 2007: Estimating tropical cyclone precipitation from station observations. Adv. Atmos. Sci., 24, 700711, doi:10.1007/s00376-007-0700-y.

    • Search Google Scholar
    • Export Citation
  • Ren, F., , J. Liang, , G. Wu, , W. Dong, , and X. Yang, 2011: Reliability analysis of climate change of tropical cyclone activity over the western North Pacific. J. Climate, 24, 58875898, doi:10.1175/2011JCLI3996.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., , and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, doi:10.1175/MWR2899.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., , A. J. Clark, , M. Xue, , and F. Kong, 2013: Factors influencing the development and maintenance of nocturnal heavy-rain-producing convective systems in a storm-scale ensemble. Mon. Wea. Rev., 141, 27782801, doi:10.1175/MWR-D-12-00239.1.

    • Search Google Scholar
    • Export Citation
  • Soderholm, B., , B. Ronalds, , and D. J. Kirshbaum, 2014: The evolution of convective storms initiated by an isolated mountain ridge. Mon. Wea. Rev., 142, 14301451, doi:10.1175/MWR-D-13-00280.1.

    • Search Google Scholar
    • Export Citation
  • Su, Z., , F. Ren, , J. Wei, , X. Lin, , S. Shi, , and X. Zhou, 2016: Changes in monsoon and tropical cyclone extreme precipitation in southeast China from 1960 to 2012. Trop. Cyclone Res. Rev., 4, 1217, doi:10.6057/2015TCRR01.02.

    • Search Google Scholar
    • Export Citation
  • Sun, L., 1997: A study of the persistence activity of northeast cold vortex in China (in Chinese). Sci. Atmos. Sin., 21, 297307.

  • Tao, S.-Y., , and Y.-H. Ding, 1981: Observational evidence of the influence of the Qinghai-Xizang (Tibet) plateau on the occurrence of heavy rain and severe convective storms on China. Bull. Amer. Meteor. Soc., 62, 2330, doi:10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , Y. Luo, , and B. J.-D. Jou, 2014: Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX: Observational analysis. J. Geophys. Res. Atmos., 119, 13 20613 232, doi:10.1002/2014JD022339.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , and L. Zhou, 2005: Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophys. Res. Lett., 32, L09707, doi:10.1029/2005GL022574.

    • Search Google Scholar
    • Export Citation
  • Wu, G.-X., , and S.-J. Chen, 1985: The effect of mechanical forcing on the formation of a mesoscale vortex. Quart. J. Roy. Meteor. Soc., 111, 10491070, doi:10.1002/qj.49711147009.

    • Search Google Scholar
    • Export Citation
  • Xu, W., , E. J. Zipser, , Y.-L. Chen, , C. Liu, , Y.-C. Liou, , W. C. Lee, , and B. Jou, 2012: An orography-associated extreme rainfall event during TiMREX: Initiation, storm evolution, and maintenance. Mon. Wea. Rev., 140, 25552574, doi:10.1175/MWR-D-11-00208.1.

    • Search Google Scholar
    • Export Citation
  • Yu, R., , and J. Li, 2012: Hourly rainfall changes in response to surface air temperature over eastern contiguous China. J. Climate, 25, 68516861, doi:10.1175/JCLI-D-11-00656.1.

    • Search Google Scholar
    • Export Citation
  • Yu, R., , Y. Xu, , T. Zhou, , and J. Li, 2007a: Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China. Geophys. Res. Lett., 34, L13703, doi:10.1029/2007GL030315.

    • Search Google Scholar
    • Export Citation
  • Yu, R., , T. Zhou, , A. Xiong, , Y. Zhu, , and J. Li, 2007b: Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett., 34, L01704, doi:10.1029/2006GL028129.

    • Search Google Scholar
    • Export Citation
  • Yuan, W., , R. Yu, , M. Zhang, , W. Lin, , H. Chen, , and J. Li, 2012: Regimes of diurnal variation of summer rainfall over subtropical East Asia. J. Climate, 25, 33073320, doi:10.1175/JCLI-D-11-00288.1.

    • Search Google Scholar
    • Export Citation
  • Zhai, P., , X. Zhang, , H. Wan, , and X. Pan, 2005: Trends on total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 10961108, doi:10.1175/JCLI-3318.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., , and P. Zhai, 2011: Temporal and spatial characteristics of extreme hourly precipitation over eastern China in the warm season. Adv. Atmos. Sci., 28, 11771183, doi:10.1007/s00376-011-0020-0.

    • Search Google Scholar
    • Export Citation
  • Zhao, S., , and J. Sun, 2007: Study on cut-off low-pressure systems with floods over northeast Asia. Meteor. Atmos. Phys., 96, 159180, doi:10.1007/s00703-006-0226-3.

    • Search Google Scholar
    • Export Citation
  • Zheng, L., , J. Sun, , X. Zhang, , and C. Liu, 2013: Organizational modes of mesoscale convective systems over central East China. Wea. Forecasting, 28, 10811098, doi:10.1175/WAF-D-12-00088.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., , D. Gong, , J. Li, , and B. Li, 2009: Detecting and understanding the multi-decadal variability of the East Asian summer monsoon—Recent progress and state of affairs. Meteor. Z., 18, 455467, doi:10.1127/0941-2948/2009/0396.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 241 241 31
PDF Downloads 224 224 34

Synoptic Situations of Extreme Hourly Precipitation over China

View More View Less
  • 1 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, and University of Chinese Academy of Sciences, Beijing, China
  • | 3 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
  • | 4 Hong Kong Observatory, Hong Kong, China
© Get Permissions
Restricted access

Abstract

In this study, synoptic situations associated with extreme hourly precipitation over China are investigated using rain gauge data, weather maps, and composite radar reflectivity data. Seasonal variations of hourly precipitation (>0.1 mm h−1) suggest complicated regional features in the occurrence frequency and intensity of rainfall. The 99.9th percentile is thus used as the threshold to define the extreme hourly rainfall for each station. The extreme rainfall is the most intense over the south coastal areas and the North China Plain. About 77% of the extreme rainfall records occur in summer with a peak in July (30.4%) during 1981–2013.

Nearly 5800 extreme hourly rainfall records in 2011–15 are classified into four types according to the synoptic situations under which they occur: the tropical cyclone (TC), surface front, vortex/shear line, and weak-synoptic forcing. They contribute 8.0%, 13.9%, 39.1%, and 39.0%, respectively, to the total occurrence and present distinctive characteristics in regional distribution and seasonal or diurnal variations. The TC type occurs most frequently along the coasts and decreases progressively toward inland China; the frontal type is distributed relatively evenly east of 104°E; the vortex/shear line type shows a prominent center over the Sichuan basin with two high-frequency bands extending from the center southeastward and northeastward, respectively; and the weak-synoptic type occurs more frequently in southeast, southwest, and northern China, and in the easternmost area of northeast China. Occurrences of the weak-synoptic type have comparable contributions from mesoscale convective systems and smaller-scale storms with notable differences in their preferred locations.

Denotes Open Access content.

Corresponding author address: Dr. Yali Luo, State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China. E-mail: yali@camscma.cn

Abstract

In this study, synoptic situations associated with extreme hourly precipitation over China are investigated using rain gauge data, weather maps, and composite radar reflectivity data. Seasonal variations of hourly precipitation (>0.1 mm h−1) suggest complicated regional features in the occurrence frequency and intensity of rainfall. The 99.9th percentile is thus used as the threshold to define the extreme hourly rainfall for each station. The extreme rainfall is the most intense over the south coastal areas and the North China Plain. About 77% of the extreme rainfall records occur in summer with a peak in July (30.4%) during 1981–2013.

Nearly 5800 extreme hourly rainfall records in 2011–15 are classified into four types according to the synoptic situations under which they occur: the tropical cyclone (TC), surface front, vortex/shear line, and weak-synoptic forcing. They contribute 8.0%, 13.9%, 39.1%, and 39.0%, respectively, to the total occurrence and present distinctive characteristics in regional distribution and seasonal or diurnal variations. The TC type occurs most frequently along the coasts and decreases progressively toward inland China; the frontal type is distributed relatively evenly east of 104°E; the vortex/shear line type shows a prominent center over the Sichuan basin with two high-frequency bands extending from the center southeastward and northeastward, respectively; and the weak-synoptic type occurs more frequently in southeast, southwest, and northern China, and in the easternmost area of northeast China. Occurrences of the weak-synoptic type have comparable contributions from mesoscale convective systems and smaller-scale storms with notable differences in their preferred locations.

Denotes Open Access content.

Corresponding author address: Dr. Yali Luo, State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China. E-mail: yali@camscma.cn
Save