• Alexander, M. A., , D. J. Vimont, , P. Chang, , and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 28852901, doi:10.1175/2010JCLI3205.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., , and E. Maloney, 2006: Interannual tropical Pacific sea surface temperatures and their relation to preceding sea level pressures in the NCAR CCSM2. J. Climate, 19, 9981012, doi:10.1175/JCLI3674.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., , and R. C. Perez, 2015: ENSO and non-ENSO induced charging and discharging of the equatorial Pacific. Climate Dyn., 45, 23092327, doi:10.1007/s00382-015-2472-x.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. T., , R. C. Perez, , and A. Karspeck, 2013: Triggering of El Niño onset through trade wind-induced charging of the equatorial Pacific. Geophys. Res. Lett., 40, 12121216, doi:10.1002/grl.50200.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., , S. K. Behera, , S. A. Rao, , H. Weng, , and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., 1988: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere–ocean model. J. Atmos. Sci., 45, 2889–2919, doi:10.1175/1520-0469(1988)045<2889:DATOAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., , and P. D. Sardeshmukh, 2015: Optimal precursors of different types of ENSO events. Geophys. Res. Lett., 42, 99529960, doi:10.1002/2015GL066171.

    • Search Google Scholar
    • Export Citation
  • Chang, P., , L. Ji, , and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature, 385, 516518, doi:10.1038/385516a0.

    • Search Google Scholar
    • Export Citation
  • Chang, P., , L. Zhang, , R. Saravanan, , D. J. Vimont, , J. C. H. Chiang, , L. Ji, , H. Seidel, , and M. K. Tippett, 2007: Pacific meridional mode and El Niño–Southern Oscillation. Geophys. Res. Lett., 34, L16608, doi:10.1029/2007GL030302.

    • Search Google Scholar
    • Export Citation
  • Chiang, J., , and D. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, doi:10.1175/JCLI4953.1.

    • Search Google Scholar
    • Export Citation
  • Clement, A., , P. DiNezio, , and C. Deser, 2011: Rethinking the ocean’s role in the Southern Oscillation. J. Climate, 24, 40564072, doi:10.1175/2011JCLI3973.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811–829, doi:10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., , and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, doi:10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kim, S. T., , J.-Y. Yu, , A. Kumar, , and H. Wang, 2012: Examination of the two types of ENSO in the NCEP CFS model and its extratropical associations. Mon. Wea. Rev., 140, 19081923, doi:10.1175/MWR-D-11-00300.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , F.-F. Jin, , and S.-I. An, 2009: Two types of Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, doi:10.1175/2008JCLI2624.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., , B. Rajagopalan, , M. Hoerling, , G. Bates, , and M. Cane, 2006: Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314, 115119, doi:10.1126/science.1131152.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., , and D. E. Harrison, 2002: ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J. Climate, 15, 11181140, doi:10.1175/1520-0442(2002)015<1118:EWENOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., , and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, doi:10.1029/2005GL022860.

    • Search Google Scholar
    • Export Citation
  • Larson, S. M., , and B. P. Kirtman, 2013: The Pacific meridional mode as a trigger for ENSO in a high-resolution coupled model. Geophys. Res. Lett., 40, 31893194, doi:10.1002/grl.50571.

    • Search Google Scholar
    • Export Citation
  • Larson, S. M., , and B. P. Kirtman, 2014: The Pacific meridional mode as an ENSO precursor and predictor in the North American multimodel ensemble. J. Climate, 27, 70187032, doi:10.1175/JCLI-D-14-00055.1.

    • Search Google Scholar
    • Export Citation
  • Larson, S. M., , and B. P. Kirtman, 2015: An alternate approach to ensemble ENSO forecast spread: Application to the 2014 forecast. Geophys. Res. Lett., 42, 9411–9415, doi:10.1002/2015GL066173.

    • Search Google Scholar
    • Export Citation
  • Lin, C.-Y., , J.-Y. Yu, , and H.-H. Hsu, 2015: CMIP5 model simulations of the Pacific meridional mode and its connection to the two types of ENSO. Int. J. Climatol., 35, 2352–2358, doi:10.1002/joc.4130.

    • Search Google Scholar
    • Export Citation
  • Linkin, M. E., , and S. Nigam, 2008: The North Pacific Oscillation west Pacific teleconnection pattern: Mature-phase structure and winter impacts. J. Climate, 21, 19791997, doi:10.1175/2007JCLI2048.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., , and S. Xie, 1994: Equatorward propagation of coupled air–sea disturbances with application to the annual cycle of the eastern tropical Pacific. J. Atmos. Sci., 51, 38073822, doi:10.1175/1520-0469(1994)051<3807:EPOCAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and et al. , 1998: The Tropical Ocean–Global Atmosphere observing system: A decade of progress. J. Geophys. Res., 103, 14 169–14 240, doi:10.1029/97JC02906.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , D. S. Battisti, , A. C. Hirst, , F.-F. Jin, , Y. Wakata, , T. Yamagata, , and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14 261–14 290, doi:10.1029/97JC03424.

    • Search Google Scholar
    • Export Citation
  • Park, J.-Y., , S.-W. Yeh, , J.-S. Kug, , and J. Yoon, 2013: Favorable connections between seasonal footprinting mechanism and El Niño. Climate Dyn., 40, 11691181, doi:10.1007/s00382-012-1477-y.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., , and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1981: The North Pacific Oscillation. J. Climatol., 1, 3957, doi:10.1002/joc.3370010106.

  • Takahashi, K., , A. Montecinos, , K. Goubanova, , and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, doi:10.1029/2011GL047364.

    • Search Google Scholar
    • Export Citation
  • Thompson, C. J., , and D. S. Battisti, 2001: A linear stochastic dynamical model of ENSO. Part II: Analysis. J. Climate, 14, 445466, doi:10.1175/1520-0442(2001)014<0445:ALSDMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., 2010: Transient growth of thermodynamically coupled variations in the tropics under an equatorially symmetric mean state. J. Climate, 23, 57715789, doi:10.1175/2010JCLI3532.1.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., , D. Battisti, , and A. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 3923–3926, doi:10.1029/2001GL013435.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., , D. Battisti, , and A. Hirst, 2003a: The seasonal footprinting mechanism in the CSIRO coupled general circulation models. J. Climate, 16, 26532667, doi:10.1175/1520-0442(2003)016<2653:TSFMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., , J. Wallace, , and D. Battisti, 2003b: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675, doi:10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., , M. Alexander, , and A. Fontaine, 2009: Midlatitude excitation of tropical variability in the Pacific: The role of thermodynamic coupling and seasonality. J. Climate, 22, 518534, doi:10.1175/2008JCLI2220.1.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., , M. Alexander, , and M. Newman, 2014: Optimal growth of central and east Pacific ENSO events. Geophys. Res. Lett., 41, 40274034, doi:10.1002/2014GL059997.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , E. M. Rasmusson, , T. P. Mitchell, , V. E. Kousky, , E. S. Sarachik, , and H. von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103, 14 241–14 259, doi:10.1029/97JC02905.

    • Search Google Scholar
    • Export Citation
  • Weng, H., , K. Ashok, , S. K. Behera, , S. A. Rao, , and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113129, doi:10.1007/s00382-007-0234-0.

    • Search Google Scholar
    • Export Citation
  • Weng, H., , S. K. Behera, , and T. Yamagata, 2009: Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Climate Dyn., 32, 663674, doi:10.1007/s00382-008-0394-6.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, doi:10.1034/j.1600-0870.1994.t01-1-00001.x.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., , and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J. Climate, 24, 708720, doi:10.1175/2010JCLI3688.1.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., , and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 2262–2278, doi:10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., , P. Chang, , and L. Ji, 2009: Linking the Pacific meridional mode to ENSO: Coupled model analysis. J. Climate, 22, 34883505, doi:10.1175/2008JCLI2473.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., , A. Kumar, , and B. Huang, 2015: The relationship between thermocline depth and SST anomalies in the eastern equatorial Pacific: Seasonality and decadal variations. Geophys. Res. Lett., 42, 4507–4515, doi:10.1002/2015GL064220.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 66 66 7
PDF Downloads 49 49 5

Modeling the Mechanisms of Linear and Nonlinear ENSO Responses to the Pacific Meridional Mode

View More View Less
  • 1 Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin
© Get Permissions
Restricted access

Abstract

Interactions between the Pacific meridional mode (PMM) and El Niño–Southern Oscillation (ENSO) are investigated using the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) and an intermediate coupled model (ICM). The two models are configured so that the CESM simulates the PMM but not ENSO, and the ICM simulates ENSO but not the PMM, allowing for a clean separation between the PMM evolution and the subsequent ENSO response. An ensemble of CESM simulations is run with an imposed surface heat flux associated with the North Pacific Oscillation (NPO) generating a sea surface temperature (SST) and wind response representative of the PMM. The PMM wind is then applied as a forcing to the ICM to simulate the ENSO response. The positive (negative) ensemble-mean PMM wind forcing results in a warm (cold) ENSO event although the responses are not symmetric (warm ENSO events are larger in amplitude than cold ENSO events), and large variability between ensemble members suggests that any individual ENSO event is strongly influenced by natural variability contained within the CESM simulations. Sensitivity experiments show that 1) direct forcing of Kelvin waves by PMM winds dominates the ENSO response, 2) seasonality of PMM forcing and ENSO growth rates influences the resulting ENSO amplitude, 3) ocean dynamics within the ICM dominate the ENSO asymmetry, and 4) the nonlinear relationship between PMM wind anomalies and surface wind stress may enhance the La Niña response to negative PMM variations. Implications for ENSO variability are discussed.

Corresponding author address: Erin E. Thomas, Department of Atmospheric and Oceanic Sciences, University of Wisconsin, 1225 West Dayton St., Madison, WI 53705. E-mail: eethomas3@wisc.edu

Abstract

Interactions between the Pacific meridional mode (PMM) and El Niño–Southern Oscillation (ENSO) are investigated using the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) and an intermediate coupled model (ICM). The two models are configured so that the CESM simulates the PMM but not ENSO, and the ICM simulates ENSO but not the PMM, allowing for a clean separation between the PMM evolution and the subsequent ENSO response. An ensemble of CESM simulations is run with an imposed surface heat flux associated with the North Pacific Oscillation (NPO) generating a sea surface temperature (SST) and wind response representative of the PMM. The PMM wind is then applied as a forcing to the ICM to simulate the ENSO response. The positive (negative) ensemble-mean PMM wind forcing results in a warm (cold) ENSO event although the responses are not symmetric (warm ENSO events are larger in amplitude than cold ENSO events), and large variability between ensemble members suggests that any individual ENSO event is strongly influenced by natural variability contained within the CESM simulations. Sensitivity experiments show that 1) direct forcing of Kelvin waves by PMM winds dominates the ENSO response, 2) seasonality of PMM forcing and ENSO growth rates influences the resulting ENSO amplitude, 3) ocean dynamics within the ICM dominate the ENSO asymmetry, and 4) the nonlinear relationship between PMM wind anomalies and surface wind stress may enhance the La Niña response to negative PMM variations. Implications for ENSO variability are discussed.

Corresponding author address: Erin E. Thomas, Department of Atmospheric and Oceanic Sciences, University of Wisconsin, 1225 West Dayton St., Madison, WI 53705. E-mail: eethomas3@wisc.edu
Save