• Adler, R. F., and et al. , 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Akuetevi, C. Q. C., , B. Barnier, , J. Verron, , J.-M. Molines, , and A. Lecointre, 2016: Interactions between the Somali Current eddies during the summer monsoon: Insights from a numerical study. Ocean Sci., 12, 185205, doi:10.5194/osd-12-735-2015.

    • Search Google Scholar
    • Export Citation
  • Alessandri, A., , A. Borrelli, , A. Cherchi, , S. Materia, , A. Navarra, , J.-Y. Lee, , and B. Wang, 2014: Prediction of Indian summer monsoon onset using dynamical subseasonal forecasts: Effects of realistic initialization of the atmosphere. Mon. Wea. Rev., 143, 778793, doi:10.1175/MWR-D-14-00187.1.

    • Search Google Scholar
    • Export Citation
  • Anstey, J. A., and et al. , 2013: Multi-model analysis of Northern Hemisphere winter blocking: Model biases and the role of resolution. J. Geophys. Res. Atmos., 118, 39563971, doi:10.1002/jgrd.50231.

    • Search Google Scholar
    • Export Citation
  • Arribas, A., and et al. , 2011: The GloSea4 ensemble prediction system for seasonal forecasting. Mon. Wea. Rev., 139, 18911910, doi:10.1175/2010MWR3615.1.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., , A. Beljaars, , K. Scipal, , P. Viterbo, , B. van den Hurk, , M. Hirschi, , and A. K. Betts, 2009: A revised hydrology for the ECMWF Model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J. Hydrometeor., 10, 623643, doi:10.1175/2008JHM1068.1.

    • Search Google Scholar
    • Export Citation
  • Batté, L., , and F. J. Doblas-Reyes, 2015: Stochastic atmospheric perturbations in the EC-Earth3 global coupled model: Impact of SPPT on seasonal forecast quality. Climate Dyn., 45, 34193439, doi:10.1007/s00382-015-2548-7.

    • Search Google Scholar
    • Export Citation
  • Bellprat, O., , S. Kotlarski, , D. Lüthi, , and C. Schär, 2012: Objective calibration of regional climate models. J. Geophys. Res., 117, D23115, doi:10.1029/2012JD018262.

    • Search Google Scholar
    • Export Citation
  • Bellucci, A., , S. Gualdi, , and A. Navarra, 2010: The double-ITCZ syndrome in coupled general circulation models: The role of large-scale vertical circulation regimes. J. Climate, 23, 11271145, doi:10.1175/2009JCLI3002.1.

    • Search Google Scholar
    • Export Citation
  • Berckmans, J., , T. Woollings, , M. E. Demory, , P. L. Vidale, , and M. Roberts, 2013: Atmospheric blocking in a high resolution climate model: Influences of mean state, orography and eddy forcing. Atmos. Sci. Lett., 14, 3440, doi:10.1002/asl2.412.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., , M. M. Holland, , E. C. Hunke, , and R. E. Moritz, 2005: Maintenance of the sea-ice edge. J. Climate, 18, 29032921, doi:10.1175/JCLI3428.1.

    • Search Google Scholar
    • Export Citation
  • Bombardi, R. J., , and L. M. V. Carvalho, 2009: IPCC global coupled model simulations of the South America monsoon system. Climate Dyn., 33, 893916, doi:10.1007/s00382-008-0488-1.

    • Search Google Scholar
    • Export Citation
  • Boschat, G., , P. Terray, , and S. Masson, 2011: Interannual relationships between Indian summer monsoon and Indo-Pacific coupled modes of variability during recent decades. Climate Dyn., 37, 10191043, doi:10.1007/s00382-010-0887-y.

    • Search Google Scholar
    • Export Citation
  • Branković, Č., , and D. Gregory, 2001: Impact of horizontal resolution on seasonal integrations. Climate Dyn., 18, 123143, doi:10.1007/s003820100165.

    • Search Google Scholar
    • Export Citation
  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13, doi:10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., and et al. , 2016: The Climate-system Historical Forecast Project: Do stratosphere-resolving models make better seasonal climate predictions in boreal winter? Quart. J. Roy. Meteor. Soc., 142, 14131427, doi:10.1002/qj.2743.

    • Search Google Scholar
    • Export Citation
  • Campin, J.-M., , C. Hill, , H. Jones, , and J. Marshall, 2011: Super-parameterization in ocean modeling: Application to deep convection. Ocean Modell., 36, 90101, doi:10.1016/j.ocemod.2010.10.003.

    • Search Google Scholar
    • Export Citation
  • Caron, L.-P., , C. G. Jones, , and K. Winger, 2011: Impact of resolution and downscaling technique in simulating recent Atlantic tropical cyclone activity. Climate Dyn., 37, 869892, doi:10.1007/s00382-010-0846-7.

    • Search Google Scholar
    • Export Citation
  • Chen, D., , M. A. Cane, , A. Kaplan, , S. E. Zebiak, , and D. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428, 733736, doi:10.1038/nature02439.

    • Search Google Scholar
    • Export Citation
  • Chevallier, M., , D. Salas y Mélia, , A. Voldoire, , M. Déqué, , and G. Garric, 2013: Seasonal Forecasts of the pan-Arctic sea ice extent using a GCM-based seasonal prediction system. J. Climate, 26, 60926104, doi:10.1175/JCLI-D-12-00612.1.

    • Search Google Scholar
    • Export Citation
  • Chowdary, J. S., , A. Parekh, , S. Ojha, , C. Gnanaseelan, , and R. Kakatkar, 2016: Impact of upper ocean processes and air–sea fluxes on seasonal SST biases over the tropical Indian Ocean in the NCEP Climate Forecasting System. Int. J. Climatol., 36, 188207, doi:10.1002/joc.4336.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2000: Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J. Climate, 13, 16741696, doi:10.1175/1520-0442(2000)013<1674:VATIAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davini, P., , C. Cagnazzo, , S. Gualdi, , and A. Navarra, 2012: Bidimensional diagnostics, variability, and trends of Northern Hemisphere blocking. J. Climate, 25, 64966509, doi:10.1175/JCLI-D-12-00032.1.

    • Search Google Scholar
    • Export Citation
  • Dawson, A., , and T. N. Palmer, 2014: Simulating weather regimes: Impact of model resolution and stochastic parameterization. Climate Dyn., 21772193, doi:10.1007/s00382-014-2238-x.

    • Search Google Scholar
    • Export Citation
  • Dawson, A., , T. N. Palmer, , and S. Corti, 2012: Simulating regime structures in weather and climate prediction models. Geophys. Res. Lett., 39, L21805, doi:10.1029/2012GL053284.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and et al. , 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, doi:10.1175/JCLI-D-11-00316.1.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., , V. Pavan, , and D. B. Stephenson, 2003: The skill of multi-model seasonal forecasts of the wintertime North Atlantic Oscillation. Climate Dyn., 21, 501514, doi:10.1007/s00382-003-0350-4.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., , J. García-Serrano, , F. Lienert, , A. P. Biescas, , and L. R. L. Rodrigues, 2013: Seasonal climate predictability and forecasting: Status and prospects. Wiley Interdiscip. Rev.: Climate Change, 4, 245268, doi:10.1002/wcc.217.

    • Search Google Scholar
    • Export Citation
  • Du, H., , F. J. Doblas-Reyes, , J. García-Serrano, , V. Guemas, , Y. Soufflet, , and B. Wouters, 2012: Sensitivity of decadal predictions to the initial atmospheric and oceanic perturbations. Climate Dyn., 39, 20132023, doi:10.1007/s00382-011-1285-9.

    • Search Google Scholar
    • Export Citation
  • Duan, W., , and C. Wei, 2013: The “spring predictability barrier” for ENSO predictions and its possible mechanism: Results from a fully coupled model. Int. J. Climatol., 33, 12801292, doi:10.1002/joc.3513.

    • Search Google Scholar
    • Export Citation
  • Eastwood, S., , T. Lavergne, , and R. Tonboe, 2014: Algorithm theoretical basis document for the OSI SAF global reprocessed sea ice concentration product. EUMETSAT Network Satellite Application Facilities, 28 pp. [Available online at http://osisaf.met.no/docs/osisaf_cdop2_ss2_atbd_sea-ice-conc-reproc_v1p1.pdf.]

  • Emerson, C., , and G. Lahn, 2012: Arctic opening: Opportunity and risk in the high north. Chatham House and Lloyds, 60 pp. [Available online at http://www.chathamhouse.org/publications/papers/view/182839.]

  • Fasullo, J., , and P. J. Webster, 2003: A hydrological definition of Indian monsoon onset and withdrawal. J. Climate, 16, 32003211, doi:10.1175/1520-0442(2003)016<3200a:AHDOIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferry, N., , L. Parent, , G. Garric, , B. Barnier, , and N. Jourdain, 2010: Mercator Global Eddy Permitting Ocean Reanalysis GLORYS1V1: Description and results. Mercator Ocean Quarterly Newsletter, Vol. 36, International CLIVAR Project Office, Southampton, United Kingdom, 15–27.

  • Fichefet, T., , and M. A. Morales Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102, 12 60912 646, doi:10.1029/97JC00480.

    • Search Google Scholar
    • Export Citation
  • Forbes, R., , A. M. Tompkins, , and A. Untch, 2011: A new prognostic bulk microphysics scheme for the IFS. ECMWF Tech. Memo. 649, 28 pp. [Available online at http://www.ecmwf.int/en/elibrary/9441-new-prognostic-bulk-microphysics-scheme-ifs.]

  • García-Serrano, J., , F. J. Doblas-Reyes, , J. R. Haarsma, , and I. Polo, 2013: Decadal prediction of the dominant West African monsoon rainfall modes. J. Geophys. Res. Atmos., 118, 52605279, doi:10.1002/jgrd.50465.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , S. G. Yeager, , R. B. Neale, , S. Levis, , and D. A. Bailey, 2010: Improvements in a half degree atmosphere/land version of the CCSM. Climate Dyn., 34, 819833, doi:10.1007/s00382-009-0614-8.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., 2005: South Asian monsoon. Intraseasonal Variability of the Atmosphere–Ocean Climate System, K. M. Lau and D. E. Waliser, Eds., Springer Praxis, 19–61.

    • Search Google Scholar
    • Export Citation
  • Guemas, V., , and F. Codron, 2011: Differing impacts of resolution changes in latitude and longitude on the midlatitudes in the LMDZ atmospheric GCM. J. Climate, 24, 58315849, doi:10.1175/2011JCLI4093.1.

    • Search Google Scholar
    • Export Citation
  • Guemas, V., , F. J. Doblas-Reyes, , F. Lienert, , Y. Soufflet, , and H. Du, 2012: Identifying the causes of the poor decadal climate prediction skill over the North Pacific. J. Geophys. Res., 117, D20111, doi:10.1029/2012JD018004.

    • Search Google Scholar
    • Export Citation
  • Guemas, V., and et al. , 2016: A review on Arctic sea-ice predictability and prediction on seasonal to decadal time-scales. Quart. J. Roy. Meteor. Soc., 142, 546561, doi:10.1002/qj.2401.

    • Search Google Scholar
    • Export Citation
  • Guilyardi, E., and et al. , 2004: Representing El Niño in coupled ocean–atmosphere GCMs: The dominant role of the atmospheric component. J. Climate, 17, 46234629, doi:10.1175/JCLI-3260.1.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and et al. , 2012: EC-Earth V2.2: Description and validation of a new seamless Earth system prediction model. Climate Dyn., 39, 26112629, doi:10.1007/s00382-011-1228-5.

    • Search Google Scholar
    • Export Citation
  • Hirahara, S., , M. Ishii, , and Y. Fukuda, 2014: Centennial-scale sea surface temperature analysis and its uncertainty. J. Climate, 27, 5775, doi:10.1175/JCLI-D-12-00837.1.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and et al. , 2013: Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Climate Dyn., 40, 21672192, doi:10.1007/s00382-012-1411-3.

    • Search Google Scholar
    • Export Citation
  • Ivanova, N., and et al. , 2015: Inter-comparison and evaluation of sea ice algorithms: Towards further identification of challenges and optimal approach using passive microwave observations. Cryosphere, 9, 17971817, doi:10.5194/tc-9-1797-2015.

    • Search Google Scholar
    • Export Citation
  • Jia, L., and et al. , 2015: Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J. Climate, 28, 20442062, doi:10.1175/JCLI-D-14-00112.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, S. J., and et al. , 2016: The resolution sensitivity of the South Asian monsoon and Indo-Pacific in a global 0.35° AGCM. Climate Dyn., 46, 807831, doi:10.1007/s00382-015-2614-1.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and et al. , 2012: High-resolution global climate simulations with the ECMWF model in Project Athena: Experimental design, model climate, and seasonal forecast skill. J. Climate, 25, 31553172, doi:10.1175/JCLI-D-11-00265.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., , P. J. Webster, , and J. A. Curry, 2012: Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere winter. Climate Dyn., 39, 29572973, doi:10.1007/s00382-012-1364-6.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and et al. , 2012: Impact of ocean model resolution on CCSM climate simulations. Climate Dyn., 39, 13031328, doi:10.1007/s00382-012-1500-3.

    • Search Google Scholar
    • Export Citation
  • Lal, M., , U. Cubasch, , J. Perlwitz, , and J. Waszkewitz, 1997: Simulation of the Indian monsoon climatology in ECHAM3 climate model: Sensitivity to horizontal resolution. Int. J. Climatol., 17, 847858, doi:10.1002/(SICI)1097-0088(19970630)17:8<847::AID-JOC165>3.0.CO;2-6.

    • Search Google Scholar
    • Export Citation
  • Landman, W. A., , and A. Beraki, 2012: Multi-model forecast skill for mid-summer rainfall over southern Africa. Int. J. Climatol., 32, 303314, doi:10.1002/joc.2273.

    • Search Google Scholar
    • Export Citation
  • Levine, R. C., , and A. G. Turner, 2012: Dependence of Indian monsoon rainfall on moisture fluxes across the Arabian Sea and the impact of coupled model sea surface temperature biases. Climate Dyn., 38, 21672190, doi:10.1007/s00382-011-1096-z.

    • Search Google Scholar
    • Export Citation
  • Lin, J. L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 44974525, doi:10.1175/JCLI4272.1.

    • Search Google Scholar
    • Export Citation
  • Liu, H., , C. Wang, , S.-K. Lee, , and D. Enfield, 2012: Atlantic warm-pool variability in the IPCC AR4 CGCM simulations. J. Climate, 25, 56125628, doi:10.1175/JCLI-D-11-00376.1.

    • Search Google Scholar
    • Export Citation
  • Love, B. S., , A. J. Matthews, , and G. M. S. Lister, 2011: The diurnal cycle of precipitation over the Maritime Continent in a high-resolution atmospheric model. Quart. J. Roy. Meteor. Soc., 137, 934947, doi:10.1002/qj.809.

    • Search Google Scholar
    • Export Citation
  • MacLachlan, C., and et al. , 2015: Global Seasonal Forecast System version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 10721084, doi:10.1002/qj.2396.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Note du Pole de modélisation 27, Institut Pierre-Simon Laplace, 209 pp.

  • Maidens, A., , A. Arribas, , A. A. Scaife, , C. MacLachlan, , D. Peterson, , and J. Knight, 2013: The influence of surface forcings on prediction of the North Atlantic Oscillation regime of winter 2010/11. Mon. Wea. Rev., 141, 38013813, doi:10.1175/MWR-D-13-00033.1.

    • Search Google Scholar
    • Export Citation
  • Manganello, J. V., and et al. , 2016: Seasonal forecasts of tropical cyclone activity in a high-atmospheric-resolution coupled prediction system. J. Climate, 29, 11791200, doi:10.1175/JCLI-D-15-0531.1.

    • Search Google Scholar
    • Export Citation
  • Manubens-Gil, D., , J. Vegas-Regidor, , C. Prodhomme, , O. Mula-Valls, , and F. J. Doblas-Reyes, 2016: Seamless management of ensemble climate prediction experiments on HPC platforms. 2016 Int. Conf. on High Performance Computing & Simulation (HPCS), Innsbruck, Austria, IEEE, 895–900, doi:10.1109/HPCSim.2016.7568429.

  • Martin, G. M., 1999: The simulation of the Asian summer monsoon, and its sensitivity to horizontal resolution, in the UK Meteorological Office Unified Model. Quart J. Roy. Meteor. Soc., 125, 14991525, doi:10.1002/qj.49712555703.

    • Search Google Scholar
    • Export Citation
  • Masson, S., , P. Terray, , G. Madec, , J. J. Luo, , T. Yamagata, , and K. Takahashi, 2012: Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Climate Dyn., 39, 681707, doi:10.1007/s00382-011-1247-2.

    • Search Google Scholar
    • Export Citation
  • Massonnet, F., , T. Fichefet, , and H. Goosse, 2015a: Prospects for improved seasonal Arctic sea ice predictions from multivariate data assimilation. Ocean Modell., 88, 1625, doi:10.1016/j.ocemod.2014.12.013.

    • Search Google Scholar
    • Export Citation
  • Massonnet, F., , V. Guemas, , N. S. Fučkar, , and F. J. Doblas-Reyes, 2015b: The 2014 high record of Antarctic sea Ice extent. Bull. Amer. Meteor. Soc., 96, S163S167, doi:10.1175/BAMS-D-15-00093.1.

    • Search Google Scholar
    • Export Citation
  • Matsueda, M., , R. Mizuta, , and S. Kusunoki, 2009: Future change in wintertime atmospheric blocking simulated using a 20-km-mesh atmospheric global circulation model. J. Geophys. Res., 114, D12114, doi:10.1029/2009JD011919.

    • Search Google Scholar
    • Export Citation
  • Mizielinski, M. S., and et al. , 2014: High-resolution global climate modelling: The UPSCALE project, a large-simulation campaign. Geosci. Model Dev., 7, 16291640, doi:10.5194/gmd-7-1629-2014.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., , H. W. Barker, , J. N. S. Cole, , M. J. Iacono, , and R. Pincus, 2008: Impact of a new radiation package, McRad, in the ECMWF Integrated Forecasting System. Mon. Wea. Rev., 136, 47734798, doi:10.1175/2008MWR2363.1.

    • Search Google Scholar
    • Export Citation
  • Neale, R., , and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16, 834848, doi:10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Phelps, M., , A. Kumar, , and J. O’Brien, 2004: Potential predictability in the NCEP CPC dynamical seasonal forecast system. J. Climate, 17, 37753785, doi:10.1175/1520-0442(2004)017<3775:PPITNC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prodhomme, C., , P. Terray, , S. Masson, , T. Izumo, , T. Tozuka, , and T. Yamagata, 2014: Impacts of Indian Ocean SST biases on the Indian monsoon: As simulated in a global coupled model. Climate Dyn., 42, 271290, doi:10.1007/s00382-013-1671-6.

    • Search Google Scholar
    • Export Citation
  • Prodhomme, C., , P. Terray, , S. Masson, , G. Boschat, , and T. Izumo, 2015: Oceanic factors controlling the Indian summer monsoon onset in a coupled model. Climate Dyn., 44, 9771002, doi:10.1007/s00382-014-2200-y.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reid, P., , S. Stammerjohn, , R. Massom, , T. Scambos, , and J. Lieser, 2015: The record 2013 Southern Hemisphere sea-ice extent maximum. Ann. Glaciol., 56, 99106, doi:10.3189/2015AoG69A892.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and et al. , 2009: Impact of resolution on the tropical Pacific circulation in a matrix of coupled models. J. Climate, 22, 25412556, doi:10.1175/2008JCLI2537.1.

    • Search Google Scholar
    • Export Citation
  • Sakamoto, T. T., and et al. , 2012: MIROC4h—A new high-resolution atmosphere–ocean coupled general circulation model. J. Meteor. Soc. Japan, 90, 325359, doi:10.2151/jmsj.2012-301.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and et al. , 2011: Improved Atlantic winter blocking in a climate model. Geophys. Res. Lett., 38, L23703, doi:10.1029/2011GL049573.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and et al. , 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 25142519, doi:10.1002/2014GL059637.

    • Search Google Scholar
    • Export Citation
  • Schiemann, R., , M. E. Demory, , M. S. Mizielinski, , M. J. Roberts, , L. C. Shaffrey, , J. Strachan, , and P. L. Vidale, 2014: The sensitivity of the tropical circulation and Maritime Continent precipitation to climate model resolution. Climate Dyn., 42, 24552468, doi:10.1007/s00382-013-1997-0.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., , T. Fuchs, , A. Meyer-Christoffer, , and B. Rudolf, 2008: Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre, 12 pp.

  • Shaffrey, L. C., and et al. , 2009: U.K. HiGEM: The new U.K. high-resolution global environment model—Model description and basic evaluation. J. Climate, 22, 18611896, doi:10.1175/2008JCLI2508.1.

    • Search Google Scholar
    • Export Citation
  • Shi, W., , N. Schaller, , D. Macleod, , T. N. Palmer, , and A. Weisheimer, 2015: Impact of hindcast length on estimates of seasonal climate predictability. Geophys. Res. Lett., 42, 15541559, doi:10.1002/2014GL062829.

    • Search Google Scholar
    • Export Citation
  • Siegert, S., , D. B. Stephenson, , O. Bellprat, , M. Ménégoz, , and F. J. Doblas-Reyes, 2016: Detecting improvements in forecast correlation skill: Statistical testing and power analysis. Mon. Wea. Rev., doi:10.1175/MWR-D-16-0037.1, in press.

  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., , S. Hameed, , G. L. Potter, , and S. J. Boyle, 1994: Simulation of the Northern summer monsoon in the ECMWF model: Sensitivity to horizontal resolution. Mon. Wea. Rev., 122, 24612481, doi:10.1175/1520-0493(1994)122<2461:SOTNSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stan, C., , and L. Xu, 2014: Climate simulations and projections with a super-parameterized climate model. Environ. Modell. Software, 60, 134152, doi:10.1016/j.envsoft.2014.06.013.

    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., and et al. , 2006: North Atlantic Oscillation response to transient greenhouse gas forcing and the impact on European winter climate: A CMIP2 multi-model assessment. Climate Dyn., 27, 401420, doi:10.1007/s00382-006-0140-x.

    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., , and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365, doi:10.1034/j.1600-0870.1990.t01-2-00003.x.

    • Search Google Scholar
    • Export Citation
  • Toniazzo, T., , and S. Woolnough, 2014: Development of warm SST errors in the southern tropical Atlantic in CMIP5 decadal hindcasts. Climate Dyn., 43, 28892913, doi:10.1007/s00382-013-1691-2.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., , O. Talagrand, , G. Candille, , and Y. Zhu, 2003: Probability and ensemble forecasts. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, I. Joliffe and D. Stephenson, Eds., Wiley, 137–163.

    • Search Google Scholar
    • Export Citation
  • Turner, J., , J. S. Hosking, , T. Phillips, , and G. J. Marshall, 2013: Temporal and spatial evolution of the Antarctic sea ice prior to the September 2012 record maximum extent. Geophys. Res. Lett., 40, 58945898, doi:10.1002/2013GL058371.

    • Search Google Scholar
    • Export Citation
  • U.S. Navy, 2012: Arctic Roadmap 2014–2030. Navy Task Force Climate Change, 43 pp. [Available online at http://www.navy.mil/docs/USN_arctic_roadmap.pdf.]

  • Valcke, S., 2013: The OASIS3 coupler: A European climate modelling community software. Geosci. Model Dev., 6, 373388, doi:10.5194/gmdd-5-2139-2012.

    • Search Google Scholar
    • Export Citation
  • van den Hurk, B. J. J. M., , A. C. M. Beljaars, , and A. K. Betts, 2000: Offline validation of the ERA-40 surface scheme. ECMWF Tech. Memo. 295, 42 pp.

  • Vannière, B., , E. Guilyardi, , G. Madec, , F. J. Doblas-Reyes, , and S. Woolnough, 2013: Using seasonal hindcasts to understand the origin of the equatorial cold tongue bias in CGCMs and its impact on ENSO. Climate Dyn., 40, 963981, doi:10.1007/s00382-012-1429-6.

    • Search Google Scholar
    • Export Citation
  • Voldoire, A., , M. Claudon, , G. Caniaux, , H. Giordani, , and R. Roehrig, 2014: Are atmospheric biases responsible for the tropical Atlantic SST biases in the CNRM-CM5 coupled model? Climate Dyn., 43, 29632984, doi:10.1007/s00382-013-2036-x.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., , and F. W. Zwiers, 2001: Statistical Analysis in Climate Research. Cambridge University Press, 484 pp.

  • Wahl, S., , M. Latif, , W. Park, , and N. Keenlyside, 2011: On the tropical Atlantic SST warm bias in the Kiel Climate Model. Climate Dyn., 36, 891906, doi:10.1007/s00382-009-0690-9.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and LinHo, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386398, doi:10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , R. Wu, , and K.-M. Lau, 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoon. J. Climate, 14, 40734090, doi:10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , Q. Ding, , and P. V. Joseph, 2009: Objective definition of the Indian summer monsoon onset. J. Climate, 22, 33033316, doi:10.1175/2008JCLI2675.1.

    • Search Google Scholar
    • Export Citation
  • Wang, W., , M. Chen, , and A. Kumar, 2013: Seasonal prediction of arctic sea ice extent from a coupled dynamical forecast system. Mon. Wea. Rev., 141, 13751394, doi:10.1175/MWR-D-12-00057.1.

    • Search Google Scholar
    • Export Citation
  • Xavier, P. K., , C. Marzina, , and B. N. Goswami, 2007: An objective definition of the Indian summer monsoon season and a new perspective on the ENSO–monsoon relationship. Quart. J. Roy. Meteor. Soc., 133, 749764, doi:10.1002/qj.45.

    • Search Google Scholar
    • Export Citation
  • Yang, X., and et al. , 2015: Seasonal predictability of extratropical storm tracks in GFDL’s high-resolution climate prediction model. J. Climate, 28, 35923611, doi:10.1175/JCLI-D-14-00517.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., and et al. , 2015: ENSO prediction in Project Minerva: Sensitivity to atmospheric horizontal resolution and ensemble size. J. Climate, 28, 20802095, doi:10.1175/JCLI-D-14-00302.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 208 208 41
PDF Downloads 157 157 30

Benefits of Increasing the Model Resolution for the Seasonal Forecast Quality in EC-Earth

View More View Less
  • 1 Barcelona Supercomputing Center, Barcelona, Spain
  • | 2 CNRM-GAME, Météo-France, Toulouse, France
  • | 3 Institut Català de Cienciès del Clima (IC3), Barcelona, Spain
  • | 4 Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
  • | 5 Laboratoire de Météorologie Dynamique/IPSL, Ecole Normale Supérieure, Paris, France
  • | 6 Institute of Atmospheric Sciences and Climate, ISAC-CNR, Torino, Italy
  • | 7 Institucio Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
© Get Permissions
Restricted access

Abstract

Resolution in climate models is thought to be an important factor for advancing seasonal prediction capability. To test this hypothesis, seasonal ensemble reforecasts are conducted over 1993–2009 with the European community model EC-Earth in three configurations: standard resolution (~1° and ~60 km in the ocean and atmosphere models, respectively), intermediate resolution (~0.25° and ~60 km), and high resolution (~0.25° and ~39 km), the two latter configurations being used without any specific tuning. The model systematic biases of 2-m temperature, sea surface temperature (SST), and wind speed are generally reduced. Notably, the tropical Pacific cold tongue bias is significantly reduced, the Somali upwelling is better represented, and excessive precipitation over the Indian Ocean and over the Maritime Continent is decreased. In terms of skill, tropical SSTs and precipitation are better reforecasted in the Pacific and the Indian Oceans at higher resolutions. In particular, the Indian monsoon is better predicted. Improvements are more difficult to detect at middle and high latitudes. Still, a slight improvement is found in the prediction of the winter North Atlantic Oscillation (NAO) along with a more realistic representation of atmospheric blocking. The sea ice extent bias is unchanged, but the skill of the reforecasts increases in some cases, such as in summer for the pan-Arctic sea ice. All these results emphasize the idea that the resolution increase is an essential feature for forecast system development. At the same time, resolution alone cannot tackle all the forecast system deficiencies and will have to be implemented alongside new physical improvements to significantly push the boundaries of seasonal prediction.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0117.s1.

Corresponding author e-mail: Chloé Prodhomme, chloe.prodhomme@bsc.es

Abstract

Resolution in climate models is thought to be an important factor for advancing seasonal prediction capability. To test this hypothesis, seasonal ensemble reforecasts are conducted over 1993–2009 with the European community model EC-Earth in three configurations: standard resolution (~1° and ~60 km in the ocean and atmosphere models, respectively), intermediate resolution (~0.25° and ~60 km), and high resolution (~0.25° and ~39 km), the two latter configurations being used without any specific tuning. The model systematic biases of 2-m temperature, sea surface temperature (SST), and wind speed are generally reduced. Notably, the tropical Pacific cold tongue bias is significantly reduced, the Somali upwelling is better represented, and excessive precipitation over the Indian Ocean and over the Maritime Continent is decreased. In terms of skill, tropical SSTs and precipitation are better reforecasted in the Pacific and the Indian Oceans at higher resolutions. In particular, the Indian monsoon is better predicted. Improvements are more difficult to detect at middle and high latitudes. Still, a slight improvement is found in the prediction of the winter North Atlantic Oscillation (NAO) along with a more realistic representation of atmospheric blocking. The sea ice extent bias is unchanged, but the skill of the reforecasts increases in some cases, such as in summer for the pan-Arctic sea ice. All these results emphasize the idea that the resolution increase is an essential feature for forecast system development. At the same time, resolution alone cannot tackle all the forecast system deficiencies and will have to be implemented alongside new physical improvements to significantly push the boundaries of seasonal prediction.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0117.s1.

Corresponding author e-mail: Chloé Prodhomme, chloe.prodhomme@bsc.es

Supplementary Materials

    • Supplemental Materials (PDF 37.08 MB)
Save