• Annan, J., , and J. Hargreaves, 2010: Reliability of the CMIP3 ensemble. Geophys. Res. Lett., 37, L02703, doi:10.1029/2009GL041994.

  • Ansari, A. R., , and R. A. Bradley, 1960: Rank-sum tests for dispersions. Ann. Math. Stat., 31, 11741189, doi:10.1214/aoms/1177705688.

  • Ault, T., , C. Deser, , M. Newman, , and J. Emile-Geay, 2013: Characterizing decadal to centennial variability in the equatorial Pacific during the last millennium. Geophys. Res. Lett., 40, 34503456, doi:10.1002/grl.50647.

    • Search Google Scholar
    • Export Citation
  • Brown, P., , W. Li, , E. Cordero, , and S. Mauget, 2015: Comparing the model-simulated global warming signal to observations using empirical estimates of forced noise. Sci. Rep., 5, 9957, doi:10.1038/srep09957.

    • Search Google Scholar
    • Export Citation
  • Cess, R., and et al. , 1996: Cloud feedback in atmospheric general circulation models: An update. J. Geophys. Res., 101, 12 79112 794, doi:10.1029/96JD00822.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., , J. Furtado, , M. Barlow, , V. A. Alexeev, , and J. Cherry, 2012: Asymmetric seasonal temperature trends. Geophys. Res. Lett., 39, L04705, doi:10.1029/2011GL050582.

    • Search Google Scholar
    • Export Citation
  • Collins, M., , B. B. B. Booth, , B. Bhaskaran, , G. R. Harris, , J. M. Murphy, , D. M. H. Sexton, , and M. J. Webb, 2011: Climate model errors, feedbacks and forcings: A comparison of perturbed physics and multi-model ensembles. Climate Dyn., 36, 17371766, doi:10.1007/s00382-010-0808-0.

    • Search Google Scholar
    • Export Citation
  • Cowtan, K., , and R. Way, 2014: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Quart. J. Roy. Meteor. Soc., 140, 19351944, doi:10.1002/qj.2297.

    • Search Google Scholar
    • Export Citation
  • Cowtan, K., and et al. , 2015: Robust comparison of climate models with observations using blended air and ocean sea surface temperatures. Geophys. Res. Lett., 42, 65266534, doi:10.1002/2015GL064888.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , A. Philips, , V. Bourdette, , and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., , J. M. Wallace, , D. S. Battisti, , E. J. Steig, , A. J. Gallant, , H.-J. Kim, , and L. Geng, 2014: Tropical forcing of the recent rapid arctic warming in northeastern Canada and Greenland. Nature, 509, 209212, doi:10.1038/nature13260.

    • Search Google Scholar
    • Export Citation
  • England, M., and et al. , 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, doi:10.1038/nclimate2106.

    • Search Google Scholar
    • Export Citation
  • Feldl, N., , and G. H. Roe, 2013: The nonlinear and nonlocal nature of climate feedbacks. J. Climate, 26, 82898304, doi:10.1175/JCLI-D-12-00631.1.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and et al. , 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 741–866.

  • Fyfe, J., , and N. Gillett, 2014: Recent observed and simulated warming. Nat. Climate Change, 4, 150151, doi:10.1038/nclimate2111.

  • Fyfe, J., , N. Gillett, , and F. Zwiers, 2013: Overestimated global warming over the past 20 years. Nat. Climate Change, 3, 767769, doi:10.1038/nclimate1972.

    • Search Google Scholar
    • Export Citation
  • Huber, M., , and R. Knutti, 2014: Natural variability, radiative forcing and climate response in the recent hiatus reconciled. Nat. Geosci., 7, 651656, doi:10.1038/ngeo2228.

    • Search Google Scholar
    • Export Citation
  • Huybers, P., 2010: Compensation between model feedbacks and curtailment of climate sensitivity. J. Climate, 23, 30093018, doi:10.1175/2010JCLI3380.1.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and et al. , 2015: Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 14691472, doi:10.1126/science.aaa5632.

    • Search Google Scholar
    • Export Citation
  • Kim, K.-Y., , and G. R. North, 1991: Surface temperature fluctuations in a stochastic climate model. J. Geophys. Res., 96, 18 57318 580, doi:10.1029/91JD01959.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., , and J. Sedlácek, 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Climate Change, 3, 369373, doi:10.1038/nclimate1716.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., , and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, doi:10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Laepple, T., , and P. Huybers, 2014a: Global and regional variability in marine surface temperatures. Geophys. Res. Lett., 41, 25282534, doi:10.1002/2014GL059345.

    • Search Google Scholar
    • Export Citation
  • Laepple, T., , and P. Huybers, 2014b: Ocean surface temperature variability: Large model–data differences at decadal and longer periods. Proc. Natl. Acad. Sci. USA, 111, 16 68216 687, doi:10.1073/pnas.1412077111.

    • Search Google Scholar
    • Export Citation
  • Li, C., , B. Stevens, , and J. Marotzke, 2015: Eurasian winter cooling in the warming hiatus of 1998–2012. Geophys. Res. Lett., 42, 81318139, doi:10.1002/2015GL065327.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., , and P. M. Forster, 2015: Forcing, feedback, and internal variability in global temperature trends. Nature, 517, 565570, doi:10.1038/nature14117.

    • Search Google Scholar
    • Export Citation
  • Masson, D., , and R. Knutti, 2011: Climate model genealogy. Geophys. Res. Lett., 38, L08703, doi:10.1029/2011GL046864.

  • Meehl, G. A., , J. Arblaster, , J. Fasullo, , A. Hu, , and K. Trenberth, 2011: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Climate Change, 1, 360364, doi:10.1038/nclimate1229.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , A. Hu, , J. Arblaster, , J. Fasullo, , and K. E. Trenberth, 2013: Externally forced and internally generated decadal climate internal variability associated with the interdecadal Pacific oscillation. J. Climate, 26, 72987310, doi:10.1175/JCLI-D-12-00548.1.

    • Search Google Scholar
    • Export Citation
  • Morice, C., , J. Kennedy, , N. Rayner, , and P. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 dataset. J. Geophys. Res., 117, D08101, doi:10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • Otto, A., and et al. , 2013: Energy budget constraints on climate response. Nat. Geosci., 6, 415416, doi:10.1038/ngeo1836.

  • Pennell, C., , and T. Reichler, 2011: On the effective number of climate models. J. Climate, 24, 23582367, doi:10.1175/2010JCLI3814.1.

  • Rajaratnam, B., , J. Romano, , M. Tsiang, , and N. S. Diffenbaugh, 2015: Debunking the climate hiatus. Climatic Change, 133, 129140, doi:10.1007/s10584-015-1495-y.

    • Search Google Scholar
    • Export Citation
  • Risbey, J., , S. Lewandowsky, , C. Langlais, , D. Monselesan, , T. O’Kane, , and N. Orekes, 2014: Well-estimated global surface warming in climate projections selected for ENSO phase. Nat. Climate Change, 4, 835840, doi:10.1038/nclimate2310.

    • Search Google Scholar
    • Export Citation
  • Roe, G., , and M. Baker, 2007: Why is climate sensitivity so unpredictable? Science, 318, 629632, doi:10.1126/science.1144735.

  • Rougier, J., , M. Goldstein, , and L. House, 2011: Second-order exchangeability analysis for multimodel ensembles. J. Amer. Stat. Assoc., 108, 852863, doi:10.1080/01621459.2013.802963.

    • Search Google Scholar
    • Export Citation
  • Sanderson, B., , R. Knutti, , and P. Caldwell, 2015: A representative democracy to reduce interdependency in multimodel ensemble. J. Climate, 28, 51715194, doi:10.1175/JCLI-D-14-00362.1.

    • Search Google Scholar
    • Export Citation
  • Santer, B., and et al. , 2014: Volcanic contributions to decadal changes in tropospheric temperature. Nat. Geosci., 7, 185189, doi:10.1038/ngeo2098.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G., , D. Shindell, , and K. Tsigaridis, 2014: Reconciling warming trends. Nat. Geosci., 7, 158160, doi:10.1038/ngeo2105.

  • Solomon, S., , K. Rosenlof, , R. Portman, , J. Daniel, , S. Davis, , T. Sanford, , and G. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, doi:10.1126/science.1182488.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 2005: Adjusting internal model errors through ocean state estimation. J. Phys. Oceanogr., 35, 11431153, doi:10.1175/JPO2733.1.

    • Search Google Scholar
    • Export Citation
  • Stott, P. A., , and S. F. Tett, 1998: Scale-dependent detection of climate change. J. Climate, 11, 32823294, doi:10.1175/1520-0442(1998)011<3282:SDDOCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, K., , R. Stouffer, , and G. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., , and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. Roy. Soc. London, 365, 20532075, doi:10.1098/rsta.2007.2076.

    • Search Google Scholar
    • Export Citation
  • Thompson, D., , E. Barnes, , C. Deser, , W. Foust, , and A. Phillips, 2015: Quantifying the role of climate internal variability in future climate trends. J. Climate, 28, 64436456, doi:10.1175/JCLI-D-14-00830.1.

    • Search Google Scholar
    • Export Citation
  • Thorne, P., , S. Outten, , I. Bethke, , and O. Seland, 2015: Investigating the recent apparent hiatus in surface temperature increases: 2. Comparison of model ensembles to observations. J. Geophys. Res. Atmos., 120, 85978620, doi:10.1002/2014JD022805.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K., , and J. Fasullo, 2013: An apparent hiatus in global warming? Earth’s Future, 1, 1932, doi:10.1002/2013EF000165.

  • van Oldenborgh, G. J., 2015: KNMI climate explorer. [Available online at http://climexp.knmi.nl/start.cgi?id=someone@somewhere.]

  • Visser, H., , S. Dangendorf, , and A. Petersen, 2015: A review of trend models applied to sea level data with reference to the “acceleration-deceleration debate.” J. Geophys. Res. Oceans, 120, 38733895, doi:10.1002/2015JC010716.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and et al. , 2012: Using a multiphysics ensemble for exploring diversity in cloud–shortwave feedback in GCMs. J. Climate, 25, 54165431, doi:10.1175/JCLI-D-11-00564.1.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1999: The interpretation of short climate records, with comments on the North Atlantic and Southern Oscillations. Bull. Amer. Meteor. Soc., 80, 245255, doi:10.1175/1520-0477(1999)080<0245:TIOSCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , J. Wallace, , and D. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 63 63 3
PDF Downloads 42 42 2

Revisiting Whether Recent Surface Temperature Trends Agree with the CMIP5 Ensemble

View More View Less
  • 1 Harvard University, Cambridge, Massachusetts
© Get Permissions
Restricted access

Abstract

In an earlier study, a weaker trend in global mean temperature over the past 15 years relative to the preceding decades was characterized as significantly lower than those contained within the phase 5 of the Coupled Model Intercomparison Project (CMIP5) ensemble. In this study, divergence between model simulations and observations is estimated using a fixed-intercept linear trend with a slope estimator that has one-third the noise variance compared to simple linear regression. Following the approach of the earlier study, where intermodel spread is used to assess the distribution of trends, but using the fixed-intercept trend metric demonstrates that recently observed trends in global mean temperature are consistent () with the CMIP5 ensemble for all 15-yr intervals of observation–model divergence since 1970. Significant clustering of global trends according to modeling center indicates that the spread in CMIP5 trends is better characterized using ensemble members drawn across models as opposed to using ensemble members from a single model. Despite model–observation consistency at the global level, substantial regional discrepancies in surface temperature trends remain.

Denotes Open Access content.

Corresponding author address: Marena Lin, Earth and Planetary Sciences, Harvard University, 20 Oxford St., Cambridge, MA 02138. E-mail: lin8@fas.harvard.edu

Abstract

In an earlier study, a weaker trend in global mean temperature over the past 15 years relative to the preceding decades was characterized as significantly lower than those contained within the phase 5 of the Coupled Model Intercomparison Project (CMIP5) ensemble. In this study, divergence between model simulations and observations is estimated using a fixed-intercept linear trend with a slope estimator that has one-third the noise variance compared to simple linear regression. Following the approach of the earlier study, where intermodel spread is used to assess the distribution of trends, but using the fixed-intercept trend metric demonstrates that recently observed trends in global mean temperature are consistent () with the CMIP5 ensemble for all 15-yr intervals of observation–model divergence since 1970. Significant clustering of global trends according to modeling center indicates that the spread in CMIP5 trends is better characterized using ensemble members drawn across models as opposed to using ensemble members from a single model. Despite model–observation consistency at the global level, substantial regional discrepancies in surface temperature trends remain.

Denotes Open Access content.

Corresponding author address: Marena Lin, Earth and Planetary Sciences, Harvard University, 20 Oxford St., Cambridge, MA 02138. E-mail: lin8@fas.harvard.edu
Save