• Abdi, H., 2010: Partial least squares regression and projection on latent structure regression (pls regression). Wiley Interdiscip. Rev.: Comput. Stat., 2, 97106, doi:10.1002/wics.51.

    • Search Google Scholar
    • Export Citation
  • Allan, R., , and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Climate, 19, 58165842, doi:10.1175/JCLI3937.1.

    • Search Google Scholar
    • Export Citation
  • Arendt, A., , J. Walsh, , and W. Harrison, 2009: Changes of glaciers and climate in northwestern North America during the late twentieth century. J. Climate, 22, 41174134, doi:10.1175/2009JCLI2784.1.

    • Search Google Scholar
    • Export Citation
  • Bartlett, M. S., 1946: On the theoretical specification and sampling properties of autocorrelated time-series. J. Roy. Stat. Soc., 8 (Suppl.), 2741, doi:10.2307/2983611.

    • Search Google Scholar
    • Export Citation
  • Bidlake, W. R., , E. G. Josberger, , and M. E. Savoca, 2010: Modeled and measured glacier change and related glaciological, hydrological, and meteorological conditions at South Cascade Glacier, Washington, balance and water years 2006 and 2007. U.S. Geological Survey Tech. Rep. 5143, 96 pp. [Available online at http://pubs.usgs.gov/sir/2010/5143/pdf/sir20105143.pdf.]

  • Bitz, C., , and D. Battisti, 1999: Interannual to decadal variability in climate and the glacier mass balance in Washington, western Canada, and Alaska. J. Climate, 12, 31813196, doi:10.1175/1520-0442(1999)012<3181:ITDVIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , C. Smith, , and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, doi:10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Casola, J. H., , L. Cuo, , B. Livneh, , D. P. Lettenmaier, , M. T. Stoelinga, , P. W. Mote, , and J. M. Wallace, 2009: Assessing the impacts of global warming on snowpack in the Washington Cascades. J. Climate, 22, 27582772, doi:10.1175/2008JCLI2612.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , and A. S. Phillips, 2009: Atmospheric circulation trends, 1950–2000: The relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J. Climate, 22, 396413, doi:10.1175/2008JCLI2453.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , M. A. Alexander, , S.-P. Xie, , and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, doi:10.1146/annurev-marine-120408-151453.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , A. Phillips, , V. Bourdette, , and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Elsberg, D., , W. D. Harrison, , K. A. Echelmeyer, , and R. M. Krimmel, 2001: Quantifying the effects of climate and surface change on glacier mass balance. J. Glaciol., 47, 649658, doi:10.3189/172756501781831783.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., , I. Jolliffe, , and D. Stephenson, 2007: Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol., 27, 11191152, doi:10.1002/joc.1499.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models: Part I. Theory. Tellus, 28A, 473485, doi:10.1111/j.2153-3490.1976.tb00696.x.

  • Hurrell, J. W., 1996: Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. Lett., 23, 665668, doi:10.1029/96GL00459.

    • Search Google Scholar
    • Export Citation
  • Huss, M., , R. Hock, , A. Bauder, , and M. Funk, 2010: 100-year mass changes in the Swiss Alps linked to the Atlantic multidecadal oscillation. Geophys. Res. Lett., 37, L10501, doi:10.1029/2010GL042616.

    • Search Google Scholar
    • Export Citation
  • Huss, M., , R. Hock, , A. Bauder, , and M. Funk, 2012: Conventional versus reference-surface mass balance. J. Glaciol., 58, 278286, doi:10.3189/2012JoG11J216.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

  • Johnstone, J. A., , and N. J. Mantua, 2014: Atmospheric controls on northeast Pacific temperature variability and change, 1900–2012. Proc. Natl. Acad. Sci. USA, 111, 14 36014 365, doi:10.1073/pnas.1318371111.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leith, C., 1973: The standard error of time-average estimates of climatic means. J. Appl. Meteor., 12, 10661069, doi:10.1175/1520-0450(1973)012<1066:TSEOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., , S. R. Hare, , Y. Zhang, , J. M. Wallace, , and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marzeion, B., , J. G. Cogley, , K. Richter, , and D. Parkes, 2014: Attribution of global glacier mass loss to anthropogenic and natural causes. Science, 345, 919921, doi:10.1126/science.1254702.

    • Search Google Scholar
    • Export Citation
  • Medwedeff, W., , and G. H. Roe, 2016: Trends and variability in the global dataset of glacier mass balance. Climate Dyn., doi:10.1007/s00382-016-3253-x, in press.

  • Mote, P. W., , A. F. Hamlet, , M. P. Clark, , and D. P. Lettenmaier, 2005: Declining mountain snowpack in western North America. Bull. Amer. Meteor. Soc., 86, 3949, doi:10.1175/BAMS-86-1-39.

    • Search Google Scholar
    • Export Citation
  • Oerlemans, J., 2001: Glaciers and Climate Change. CRC Press, 160 pp.

  • O’Neel, S., , E. Hood, , A. Arendt, , and L. Sass, 2014: Assessing streamflow sensitivity to variations in glacier mass balance. Climatic Change, 123, 329341, doi:10.1007/s10584-013-1042-7.

    • Search Google Scholar
    • Export Citation
  • O’Neel, S., , L. Sass, , C. J. McNeil, , and D. McGrath, 2016: USGS Alaska benchmark glacier mass balance data. USGS Alaska Science Center, accessed 15 April 2016, doi:10.5066/F7HD7SRF.

  • Rasmussen, L., , and H. Conway, 2004: Climate and glacier variability in western North America. J. Climate, 17, 18041815, doi:10.1175/1520-0442(2004)017<1804:CAGVIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rayner, N., , D. Parker, , C. Folland, , E. Horton, , L. Alexander, , D. Rowell, , E. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2011: What do glaciers tell us about climate variability and climate change? J. Glaciol., 57, 567578, doi:10.3189/002214311796905640.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., , and M. B. Baker, 2014: Glacier response to climate perturbations: An accurate linear geometric model. J. Glaciol., 60, 670684, doi:10.3189/2014JoG14J016.

    • Search Google Scholar
    • Export Citation
  • Smoliak, B. V., , J. M. Wallace, , M. T. Stoelinga, , and T. P. Mitchell, 2010: Application of partial least squares regression to the diagnosis of year-to-year variations in Pacific Northwest snowpack and Atlantic hurricanes. Geophys. Res. Lett., 37, L03801, doi:10.1029/2009GL041478.

    • Search Google Scholar
    • Export Citation
  • Smoliak, B. V., , J. M. Wallace, , P. Lin, , and Q. Fu, 2015: Dynamical adjustment of the Northern Hemisphere surface air temperature field: Methodology and application to observations. J. Climate, 28, 16131629, doi:10.1175/JCLI-D-14-00111.1.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., , M. D. Albright, , and C. F. Mass, 2010: A new look at snowpack trends in the Cascade Mountains. J. Climate, 23, 24732491, doi:10.1175/2009JCLI2911.1.

    • Search Google Scholar
    • Export Citation
  • Theiler, J., , S. Eubank, , A. Longtin, , B. Galdrikian, , and J. D. Farmer, 1992: Testing for nonlinearity in time series: The method of surrogate data. Physica D, 58, 7794, doi:10.1016/0167-2789(92)90102-S.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., , J. M. Wallace, , and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036, doi:10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., , J. M. Wallace, , P. D. Jones, , and J. J. Kennedy, 2009: Identifying signatures of natural climate variability in time series of global-mean surface temperature: Methodology and insights. J. Climate, 22, 61206141, doi:10.1175/2009JCLI3089.1.

    • Search Google Scholar
    • Export Citation
  • Vafeiadis, T., , E. Bora-Senta, , and D. Kugiumtzis, 2008: Evaluation of linear trend tests using resampling techniques. Commun. Stat. Simul. Comput., 37, 907923, doi:10.1080/03610910701858371.

    • Search Google Scholar
    • Export Citation
  • Van Beusekom, A. E., , S. R. O’Neel, , R. S. March, , L. C. Sass, , and L. H. Cox, 2010: Re-analysis of Alaskan benchmark glacier mass-balance data using the index method. U.S. Geological Survey Tech. Rep. 5247, 26 pp. [Available online at http://pubs.usgs.gov/sir/2010/5247/pdf/sir20105247.pdf.]

  • Von Storch, H., , and F. Zwiers, 1999: Statistical Analysis in Climate Research.Cambridge University Press, 496 pp.

  • Wallace, J. M., , and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. Academic Press, 504 pp.

  • Wallace, J. M., , Y. Zhang, , and J. A. Renwick, 1995: Dynamic contribution to hemispheric mean temperature trends. Science, 270, 780783, doi:10.1126/science.270.5237.780.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , Q. Fu, , B. V. Smoliak, , P. Lin, , and C. M. Johanson, 2012: Simulated versus observed patterns of warming over the extratropical Northern Hemisphere continents during the cold season. Proc. Natl. Acad. Sci. USA, 109, 14 33714 342, doi:10.1073/pnas.1204875109.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , C. Deser, , B. V. Smoliak, , and A. S. Phillips, 2015: Attribution of climate change in the presence of internal variability. Climate Change: Multidecadal and Beyond, C.-P. Chang et al., Eds., World Scientific Series on Asia–Pacific Weather and Climate, Vol. 6, World Scientific, 1–29.

  • Walters, R. A., , and M. F. Meier, 1989: Variability of glacier mass balances in western North America. Aspects of Climate Variability in the Pacific and the Western Americas, Geophys. Monogr., Vol. 55, Amer. Geophys. Union, 365–374.

  • World Glacier Monitoring Service, 2012: Fluctuations of glaciers: 2005–2010. World Glacier Monitoring Service Tech. Rep., Vol. 10, 355 pp. [Available online at http://wgms.ch/downloads/wgms_2012_fogX.pdf.]

  • World Glacier Monitoring Service, 2013: Glacier mass balance bulletin. World Glacier Monitoring Service Bulletin 12, 114 pp. [Available online at http://wgms.ch/downloads/wgms_2013_gmbb12.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 82 82 25
PDF Downloads 55 55 20

Identifying Dynamically Induced Variability in Glacier Mass-Balance Records

View More View Less
  • 1 Department of Earth and Space Sciences, University of Washington, Seattle, Washington
  • | 2 Scripps Institution of Oceanography, La Jolla, California
  • | 3 Department of Earth and Space Sciences, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Abstract

Glacier mass balance provides a direct indicator of a glacier’s relationship with local climate, but internally generated variability in atmospheric circulation adds a significant degree of noise to mass-balance time series, making it difficult to correctly identify and interpret trends. This study applies “dynamical adjustment” to seasonal mass-balance records to identify and remove the component of variance in these time series that is associated with large-scale circulation fluctuations (dynamical adjustment refers here to a statistical method and not a glacier’s dynamical response to climate). Mass-balance records are investigated for three glaciers: Wolverine and Gulkana in Alaska and South Cascade in Washington. North Pacific sea level pressure and sea surface temperature fields perform comparably as predictors, each explaining 50%–60% of variance in winter balance and 25%–35% in summer balance for South Cascade and Wolverine Glaciers. Gulkana Glacier, located farther inland, is less closely linked to North Pacific climate variability, with the predictors explaining roughly 30% of variance in winter and summer balance. To investigate the degree to which this variability affects trends, adjusted mass-balance time series are compared to those in the raw data, with common results for all three glaciers; winter balance trends are not significant initially and do not gain robust significance after adjustment despite the large amount of circulation-related variability. However, the raw summer balance data have statistically significant negative trends that remain after dynamical adjustment. This indicates that these trends of increasing ablation in recent decades are not due to circulation anomalies and are consistent with anthropogenic warming.

Corresponding author address: John Erich Christian, Dept. of Earth and Space Sciences, University of Washington, 4000 15th Ave. NE, Box 351310, Seattle, WA 98195. E-mail: jemc2@uw.edu

Abstract

Glacier mass balance provides a direct indicator of a glacier’s relationship with local climate, but internally generated variability in atmospheric circulation adds a significant degree of noise to mass-balance time series, making it difficult to correctly identify and interpret trends. This study applies “dynamical adjustment” to seasonal mass-balance records to identify and remove the component of variance in these time series that is associated with large-scale circulation fluctuations (dynamical adjustment refers here to a statistical method and not a glacier’s dynamical response to climate). Mass-balance records are investigated for three glaciers: Wolverine and Gulkana in Alaska and South Cascade in Washington. North Pacific sea level pressure and sea surface temperature fields perform comparably as predictors, each explaining 50%–60% of variance in winter balance and 25%–35% in summer balance for South Cascade and Wolverine Glaciers. Gulkana Glacier, located farther inland, is less closely linked to North Pacific climate variability, with the predictors explaining roughly 30% of variance in winter and summer balance. To investigate the degree to which this variability affects trends, adjusted mass-balance time series are compared to those in the raw data, with common results for all three glaciers; winter balance trends are not significant initially and do not gain robust significance after adjustment despite the large amount of circulation-related variability. However, the raw summer balance data have statistically significant negative trends that remain after dynamical adjustment. This indicates that these trends of increasing ablation in recent decades are not due to circulation anomalies and are consistent with anthropogenic warming.

Corresponding author address: John Erich Christian, Dept. of Earth and Space Sciences, University of Washington, 4000 15th Ave. NE, Box 351310, Seattle, WA 98195. E-mail: jemc2@uw.edu
Save