• Arakawa, A., , and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Birner, T., 2010: Residual circulation and tropopause structure. J. Atmos. Sci., 67, 25822600, doi:10.1175/2010JAS3287.1.

  • Boos, W. R., , and Z. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218222, doi:10.1038/nature08707.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., , and N. Blunt, 2011: A new mechanism for ocean–atmosphere coupling in midlatitudes. Quart. J. Roy. Meteor. Soc., 137, 10951101, doi:10.1002/qj.814.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., , and S. C. Sherwood, 2004: Effect of convection on the summertime extratropical lower stratosphere. J. Geophys. Res., 109, D23301, doi:10.1029/2004JD005209.

    • Search Google Scholar
    • Export Citation
  • Dethof, A., , A. O’Neill, , J. M. Slingo, , and H. G. J. Smit, 1999: A mechanism for moistening the lower stratosphere involving the Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 125, 10791106, doi:10.1002/qj.1999.49712555602.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 592 pp.

  • Emanuel, K. A., , J. D. Neelin, , and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143, doi:10.1002/qj.49712051902.

    • Search Google Scholar
    • Export Citation
  • Folkins, I., , and R. V. Martin, 2005: The vertical structure of tropical convection and its impact on the budgets of water vapor and ozone. J. Atmos. Sci., 62, 15601573, doi:10.1175/JAS3407.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2008: Midlatitude static stability in simple and comprehensive general circulation models. J. Atmos. Sci., 65, 10491062, doi:10.1175/2007JAS2373.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., , and N. A. Davis, 2011: The seasonal cycle of midlatitude static stability over land and ocean in global reanalyses. Geophys. Res. Lett., 38, L13803, doi:10.1029/2011GL047747.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., , I. M. Held, , and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, doi:10.1175/JAS3753.1.

    • Search Google Scholar
    • Export Citation
  • Fu, R., and et al. , 2006: Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proc. Natl. Acad. Sci. USA, 103, 56645669, doi:10.1073/pnas.0601584103.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., , D. E. Kinnison, , T. J. Dunkerton, , and G. P. Brasseur, 2004: Impact of monsoon circulations on the upper troposphere and lower stratosphere. J. Geophys. Res., 109, D22101, doi:10.1029/2004JD004878.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Highwood, E. J., , and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124, 15791604, doi:10.1002/qj.49712454911.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., , P. H. Haynes, , M. E. McIntyre, , A. R. Douglass, , R. B. Rood, , and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403440, doi:10.1029/95RG02097.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1991: Towards a PV-θ view of the general circulation. Tellus, 43B, 2735, doi:10.3402/tellusb.v43i4.15396.

  • Juckes, M. N., 2000: The static stability of the midlatitude troposphere: The relevance of moisture. J. Atmos. Sci., 57, 30503057, doi:10.1175/1520-0469(2000)057<3050:TSSOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korty, R. L., , and T. Schneider, 2007: A climatology of the tropospheric thermal stratification using saturation potential vorticity. J. Climate, 20, 59775991, doi:10.1175/2007JCLI1788.1.

    • Search Google Scholar
    • Export Citation
  • Kunz, A., , L. L. Pan, , P. Konopka, , D. E. Kinnison, , and S. Tilmes, 2011: Chemical and dynamical discontinuity at the extratropical tropopause based on START08 and WACCM analyses. J. Geophys. Res., 116, D24302, doi:10.1029/2011JD016686.

    • Search Google Scholar
    • Export Citation
  • Liu, Y. M., , B. J. Hoskins, , and M. Blackburn, 2007: Impact of Tibetan orography and heating on the summer flow over Asia. J. Meteor. Soc. Japan, 85B, 119, doi:10.2151/jmsj.85B.1.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., , and B. J. Hoskins, 2000: A standard test for AGCMs including their physical parametrizations: I: The proposal. Atmos. Sci. Lett., 1, 101107, doi:10.1006/asle.2000.0019.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and et al. , 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 282 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.]

  • Nie, J., , W. R. Boos, , and Z. Kuang, 2010: Observational evaluation of a convective quasi-equilibrium view of monsoons. J. Climate, 23, 44164428, doi:10.1175/2010JCLI3505.1.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., , T. A. Shaw, , and F. Laliberte, 2011: A statistical generalization of the transformed Eulerian-mean circulation for an arbitrary vertical coordinate system. J. Atmos. Sci., 68, 17661783, doi:10.1175/2011JAS3711.1.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , and M. Park, 2006: Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J. Geophys. Res., 111, D12314, doi:10.1029/2005JD006490.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , M. Park, , L. Emmons, , D. Kinnison, , P. Bernath, , K. Walker, , C. Boone, , and H. Pumphrey, 2010: Asian monsoon transport of pollution to the stratosphere. Science, 328, 611613, doi:10.1126/science.1182274.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., , K. Zhang, , and R. Fu, 2015: What controls stratospheric water vapor in the NH summer monsoon regions? J. Geophys. Res. Atmos., 120, 7988–8001, doi:10.1002/2015JD023622.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., , and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122, 13851404, doi:10.1002/qj.49712253408.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., , and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 31923211, doi:10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., , and I. G. Watterson, 1984: Stationary Rossby wave propagation through easterly layers. J. Atmos. Sci., 41, 20692083, doi:10.1175/1520-0469(1984)041<2069:SRWPTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., , and P. A. O’Gorman, 2008: Moist convection and the thermal stratification of the extratropical troposphere. J. Atmos. Sci., 65, 35713583, doi:10.1175/2008JAS2652.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., 2014: On the role of planetary-scale waves in the abrupt seasonal transition of the Northern Hemisphere general circulation. J. Atmos. Sci., 71, 17241746, doi:10.1175/JAS-D-13-0137.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., , and O. Pauluis, 2012: Tropical and subtropical meridional latent heat transports by disturbances to the zonal mean and their role in the general circulation. J. Atmos. Sci., 69, 18721889, doi:10.1175/JAS-D-11-0236.1.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., , N. F. Tandon, , and L. M. Polvani, 2011: The fine-scale structure of the global tropopause derived from COSMIC GPS radio occultation measurements. J. Geophys. Res., 116, D20113, doi:10.1029/2011JD016030.

    • Search Google Scholar
    • Export Citation
  • Wang, H. L., , and M. F. Ting, 1999: Seasonal cycle of the climatological stationary waves in the NCEP–NCAR reanalysis. J. Atmos. Sci., 56, 38923919, doi:10.1175/1520-0469(1999)056<3892:SCOTCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • WMO, 1957: Meteorology: A three-dimensional science. WMO Bull., 4, 134138.

  • Wu, Y., , and O. Pauluis, 2014: Midlatitude tropopause and low-level moisture. J. Atmos. Sci., 71, 11871200, doi:10.1175/JAS-D-13-0154.1.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., , and O. Pauluis, 2015: What is the representation of the moisture–tropopause relationship in CMIP5 models? J. Climate, 28, 48774889, doi:10.1175/JCLI-D-14-00543.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 40 40 4
PDF Downloads 25 25 2

The Impact of the Asian Summer Monsoon Circulation on the Tropopause

View More View Less
  • 1 Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana
  • | 2 Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois
© Get Permissions
Restricted access

Abstract

Previous studies have identified two important features of summertime thermodynamics: 1) a significant correlation between the low-level distribution of equivalent potential temperature and the potential temperature θ of the extratropical tropopause and 2) a northwestward shift of the maximum tropopause θ relative to the maximum low-level . Here, the authors hypothesize these two features occur because of the Asian monsoon circulation. The hypothesis is examined using a set of idealized prescribed sea surface temperature (SST) aquaplanet simulations. Simulations with a zonally symmetric background climate exhibit a weak moisture–tropopause correlation. A significant correlation and northwestward shift occurs when a zonal wave-1 SST perturbation is introduced in the Northern Hemisphere subtropics. The equivalent zonal-mean subtropical warming does not produce a significant correlation.

A mechanism is proposed to explain the moisture–tropopause connection that involves the circulation response to zonally asymmetric surface heating and its impact on the tropopause defined by the 2-potential-vorticity-unit (PVU; 1 PVU = 10−6 K kg−1 m2 s−1) surface. While the circulation response to diabatic heating is well known, here the focus is on the implications for the tropopause. Consistent with previous research, surface heating increases the low-level and produces low-level convergence and a cyclonic circulation. The low-level convergence is coupled with upper-level divergence via convection and produces an upper-level anticyclonic circulation consistent with Sverdrup balance. The anticyclonic vorticity lowers the PV northwest of the surface heating via Rossby wave dynamics. The decreased PV leads to a northwestward shift of the 2-PVU surface on fixed pressure levels. The θ value to the northwest of the surface heating is higher, and consequently the maximum tropopause θ increases.

Corresponding author address: Yutian Wu, Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907. E-mail: wu640@purdue.edu

Abstract

Previous studies have identified two important features of summertime thermodynamics: 1) a significant correlation between the low-level distribution of equivalent potential temperature and the potential temperature θ of the extratropical tropopause and 2) a northwestward shift of the maximum tropopause θ relative to the maximum low-level . Here, the authors hypothesize these two features occur because of the Asian monsoon circulation. The hypothesis is examined using a set of idealized prescribed sea surface temperature (SST) aquaplanet simulations. Simulations with a zonally symmetric background climate exhibit a weak moisture–tropopause correlation. A significant correlation and northwestward shift occurs when a zonal wave-1 SST perturbation is introduced in the Northern Hemisphere subtropics. The equivalent zonal-mean subtropical warming does not produce a significant correlation.

A mechanism is proposed to explain the moisture–tropopause connection that involves the circulation response to zonally asymmetric surface heating and its impact on the tropopause defined by the 2-potential-vorticity-unit (PVU; 1 PVU = 10−6 K kg−1 m2 s−1) surface. While the circulation response to diabatic heating is well known, here the focus is on the implications for the tropopause. Consistent with previous research, surface heating increases the low-level and produces low-level convergence and a cyclonic circulation. The low-level convergence is coupled with upper-level divergence via convection and produces an upper-level anticyclonic circulation consistent with Sverdrup balance. The anticyclonic vorticity lowers the PV northwest of the surface heating via Rossby wave dynamics. The decreased PV leads to a northwestward shift of the 2-PVU surface on fixed pressure levels. The θ value to the northwest of the surface heating is higher, and consequently the maximum tropopause θ increases.

Corresponding author address: Yutian Wu, Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907. E-mail: wu640@purdue.edu
Save