• Achtert, P., , I. M. Brooks, , B. J. Brooks, , B. I. Moat, , J. Prytherch, , P. O. G. Persson, , and M. Tjernström, 2015: Measurement of wind profiles by motion-stabilised ship-borne Doppler lidar. Atmos. Meas. Tech., 8, 49935007, doi:10.5194/amt-8-4993-2015.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, , K. J. Claffey, , and A. P. Makshtas, 2000: Low-level atmospheric jets and inversions over the western Weddell Sea. Bound.-Layer Meteor., 97, 459486, doi:10.1023/A:1002793831076.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., Ed., 1990: Radar in Meteorology. Amer. Meteor. Soc., 806 pp.

  • Baas, P., , F. C. Bosveld, , H. Klein Baltink, , and A. A. M. Holtslag, 2009: A climatology of nocturnal low-level jets at Cabauw. J. Appl. Meteor. Climatol., 48, 16271642, doi:10.1175/2009JAMC1965.1.

    • Search Google Scholar
    • Export Citation
  • Barton, N. P., , S. A. Klein, , J. S. Boyle, , and Y.-Y. Y. Zhang, 2012: Arctic synoptic regimes: Comparing domain-wide Arctic cloud observations with CAM4 and CAM5 during similar dynamics. J. Geophys. Res., 117, D15205, doi:10.1029/2012JD017589.

    • Search Google Scholar
    • Export Citation
  • Barton, N. P., , S. A. Klein, , and J. S. Boyle, 2014: On the contribution of longwave radiation to global climate model biases in Arctic lower tropospheric stability. J. Climate, 27, 72507269, doi:10.1175/JCLI-D-14-00126.1.

    • Search Google Scholar
    • Export Citation
  • Bintanja, R., , R. G. Graversen, , and W. Hazeleger, 2011: Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space. Nat. Geosci., 4, 758761, doi:10.1038/ngeo1285.

    • Search Google Scholar
    • Export Citation
  • Bintanja, R., , E. C. van der Linden, , and W. Hazeleger, 2012: Boundary layer stability and Arctic climate change: A feedback study using EC-Earth. Climate Dyn., 39, 26592673, doi:10.1007/s00382-011-1272-1.

    • Search Google Scholar
    • Export Citation
  • Bjornert, R., 1975: Field operations for the AIDJEX main experiment. AIDJEX Bulletin, No. 29, Arctic Ice Dynamics Joint Experiment, University of Washington, Seattle, Washington, 173180.

    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., , F. T. Keimig, , and H. F. Diaz, 1992: Climatology of surface-based inversions in the North American Arctic. J. Geophys. Res., 97, 15 69915 712, doi:10.1029/92JD01451.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and et al. , 2004: The EPIC 2001 stratocumulus study. Bull. Amer. Meteor. Soc., 85, 967977, doi:10.1175/BAMS-85-7-967.

    • Search Google Scholar
    • Export Citation
  • Carmack, E., and et al. , 2015: Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic. Bull. Amer. Meteor. Soc., 96, 20792105, doi:10.1175/BAMS-D-13-00177.1.

    • Search Google Scholar
    • Export Citation
  • de Boer, G., and et al. , 2014: Near-surface meteorology during the Arctic Cloud Ocean Study (ASCOS): Evaluation of reanalyses and global climate models. Atmos. Chem. Phys., 14, 427445, doi:10.5194/acp-14-427-2014.

    • Search Google Scholar
    • Export Citation
  • Devasthale, A., , M. Tjernström, , M. Caian, , M. A. Thomas, , B. H. Kahn, , and E. J. Fetzer, 2012: Influence of the Arctic Oscillation on the vertical distribution of clouds as observed by the A-Train constellation of satellites. Atmos. Chem. Phys., 12, 10 53510 544, doi:10.5194/acp-12-10535-2012.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., , A. A. Hinton, , K. E. Prada, , J. E. Hare, , and C. W. Fairall, 1998: Direct covariance flux estimates from mobile platforms at sea. J. Atmos. Oceanic Technol., 15, 547562, doi:10.1175/1520-0426(1998)015<0547:DCFEFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ehrlich, A., , E. Bierwirth, , M. Wendisch, , J.-F. Gayet, , G. Mioche, , A. Lampert, , and J. Heintzenberg, 2008: Cloud phase identification of Arctic boundary-layer clouds from airborne spectral reflection measurements: Test of three approaches. Atmos. Chem. Phys., 8, 74937505, doi:10.5194/acp-8-7493-2008.

    • Search Google Scholar
    • Export Citation
  • Elvidge, A. D., , I. A. Renfrew, , A. I. Weiss, , I. M. Brooks, , T. A. Lachlan-Cope, , and J. C. King, 2016: Observations of surface momentum exchange over the marginal ice zone and recommendations for its parameterization. Atmos. Chem. Phys., 16, 15451563, doi:10.5194/acp-16-1545-2016.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., , and S. J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett., 10, 014005, doi:10.1088/1748-9326/10/1/014005.

    • Search Google Scholar
    • Export Citation
  • Guest, P. S., , and K. L. Davidson, 1988: MIZEX 87 Meteorology Atlas. Naval Postgraduate School Tech. Rep. NPS-63-88-004, 140 pp. [Available online at http://hdl.handle.net/10945/28997.]

  • Heard, D. E., and et al. , 2006: The North Atlantic Marine Boundary Layer Experiment (NAMBLEX). Overview of the campaign held at Mace Head, Ireland, in summer 2002. Atmos. Chem. Phys., 6, 22412272, doi:10.5194/acp-6-2241-2006.

    • Search Google Scholar
    • Export Citation
  • Jakobson, L., , T. Vihma, , E. Jakobson, , T. Palo, , A. Männik, , and J. Jaagus, 2013: Low-level jet characteristics over the Arctic Ocean in spring and summer. Atmos. Chem. Phys., 13, 11 08911 099, doi:10.5194/acp-13-11089-2013.

    • Search Google Scholar
    • Export Citation
  • Jeffries, M. O., , and J. Richter-Menge, Eds., 2015: The Arctic [in “State of the Climate in 2014”]. Bull. Amer. Meteor. Soc., 96, S169S219.

    • Search Google Scholar
    • Export Citation
  • Johannessen, O. M., 1987: Introduction: Summer marginal ice zone experiments during 1983 and 1984 in Fram Strait and the Greenland Sea. J. Geophys. Res., 92, 67176718, doi:10.1029/JC092iC07p06716.

    • Search Google Scholar
    • Export Citation
  • Johannessen, O. M., , and S. Sandven, 1989: SIZEX 89: A prelaunch ERS-1 experiment. SIZEX Group, Nansen Remote Sensing Center Experiment Rep. 23, 39 pp.

  • Kaleschke, L., , C. Lüpkes, , T. Vihma, , J. Haarpaintner, , A. Bochert, , J. Hartmann, , and G. Heygster, 2001: SSM/I sea ice remote sensing for mesoscale ocean–atmosphere interaction analysis. Can. J. Remote Sens., 27, 526537, doi:10.1080/07038992.2001.10854892.

    • Search Google Scholar
    • Export Citation
  • Karlsson, J., , and G. Svensson, 2013: Consequences of poor representation of Arctic sea-ice albedo and cloud-radiation interactions in the CMIP5 model ensemble. Geophys. Res. Lett., 40, 43744379, doi:10.1002/grl.50768.

    • Search Google Scholar
    • Export Citation
  • Klingebiel, M., and et al. , 2015: Arctic low-level boundary layer clouds: In situ measurements and simulations of mono- and bimodal supercooled droplet size distributions at the top layer of liquid phase clouds. Atmos. Chem. Phys., 15, 617631, doi:10.5194/acp-15-617-2015.

    • Search Google Scholar
    • Export Citation
  • Lampert, A., and et al. , 2012: The spring-time boundary layer in the central Arctic observed during PAMARCMiP 2009. Atmosphere, 3, 320351, doi:10.3390/atmos3030320.

    • Search Google Scholar
    • Export Citation
  • Langland, R. H., , P. M. Tag, , and R. W. Fett, 1989: An ice breeze mechanism for boundary-layer jets. Bound.-Layer Meteor., 48, 177195, doi:10.1007/BF00121789.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and et al. , 2011: Indirect and semi-direct aerosol campaign: The impact of arctic aerosols on clouds. Bull. Amer. Meteor. Soc., 92, 183201, doi:10.1175/2010BAMS2935.1.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., , C. Deser, , R. Tomas, , and J. Kay, 2011: Arctic inversion strength in climate models. J. Climate, 24, 47334740, doi:10.1175/2011JCLI3968.1.

    • Search Google Scholar
    • Export Citation
  • Moat, B. I., , M. J. Yelland, , and I. M. Brooks, 2015: Airflow distortion at instrument sites on the ODEN during the ACSE project. National Oceanography Centre Internal Doc. 17, 114 pp. [Available online at http://eprints.soton.ac.uk/385311/.]

  • Moran, K. P., , S. Pezoa, , C. W. Fairall, , C. R. Williams, , T. E. Ayers, , A. Brewer, , S. P. de Szoeke, , and V. Ghate, 2012: A motion-stabilized W-band radar for shipboard observations of marine boundary-layer clouds. Bound.-Layer Meteor., 143, 324, doi:10.1007/s10546-011-9674-5.

    • Search Google Scholar
    • Export Citation
  • Nygård, T., , T. Valkonen, , and T. Vihma, 2014: Characteristics of Arctic low-tropospheric humidity inversions based on radio soundings. Atmos. Chem. Phys., 14, 19591971, doi:10.5194/acp-14-1959-2014.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., 2012: Onset and end of the summer melt season over sea ice: Thermal structure and surface energy perspective from SHEBA. Climate Dyn., 39, 13491371, doi:10.1007/s00382-011-1196-9.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., , C. W. Fairall, , E. L Andreas, , P. S. Guest, , and D. K. Perovich, 2002: Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near-surface conditions and surface energy budget. J. Geophys. Res., 107, 8045, doi:10.1029/2000JC000705.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., , and J. A. Curry, 1995: Atmospheric convective plumes emanating from leads: 2. Microphysical and radiative processes. J. Geophys. Res., 100, 46334642, doi:10.1029/94JC02655.

    • Search Google Scholar
    • Export Citation
  • Pithan, F., , and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, doi:10.1038/ngeo2071.

    • Search Google Scholar
    • Export Citation
  • Pithan, F., , B. Medeiros, , and T. Mauritsen, 2014: Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions. Climate Dyn., 43, 289303, doi:10.1007/s00382-013-1964-9.

    • Search Google Scholar
    • Export Citation
  • Prytherch, J., , M. J. Yelland, , I. M. Brooks, , D. J. Tupman, , R. W. Pascal, , B. I. Moat, , and S. J. Norris, 2015: Motion-correlated flow distortion and wave-induced biases in air–sea flux measurements from ships. Atmos. Chem. Phys., 15, 10 61910 629, doi:10.5194/acp-15-10619-2015.

    • Search Google Scholar
    • Export Citation
  • Sedlar, J., and et al. , 2011: A transitioning Arctic surface energy budget: The impacts of solar zenith angle, surface albedo and cloud radiative forcing. Climate Dyn., 37, 16431660, doi:10.1007/s00382-010-0937-5.

    • Search Google Scholar
    • Export Citation
  • Sedlar, J., , M. D. Shupe, , and M. Tjernström, 2012: On the relationship between thermodynamic structure and cloud top and its climate significance in the Arctic. J. Climate, 25, 23742393, doi:10.1175/JCLI-D-11-00186.1.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., , and J. A. Francis, 2006: The Arctic amplification debate. Climatic Change, 76, 241264, doi:10.1007/s10584-005-9017-y.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., , and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, doi:10.1016/j.gloplacha.2011.03.004.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., , J. D. Kahl, , and R. C. Schnell, 1992: Low‐level temperature inversions of the Eurasian Arctic and comparisons with Soviet drifting station data. J. Climate, 5, 615629, doi:10.1175/1520-0442(1992)005<0615:LLTIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., , and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17, 616628, doi:10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., , P. Kollias, , S. Y. Matrosov, , and T. L. Schneider, 2004: Deriving mixed-phase cloud properties from Doppler radar spectra. J. Atmos. Oceanic Technol., 21, 660670, doi:10.1175/1520-0426(2004)021<0660:DMCPFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., , T. Uttal, , and S. Y. Matrosov, 2005: Arctic cloud microphysics retrievals from surface-based remote sensors at SHEBA. J. Appl. Meteor., 44, 15441562, doi:10.1175/JAM2297.1.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., , V. P. Walden, , E. Eloranta, , T. Uttal, , J. R. Campbell, , S. M. Starkweather, , and M. Shiobara, 2011: Clouds at Arctic atmospheric observatories. Part I: Occurrence and macrophysical properties. J. Appl. Meteor. Climatol., 50, 626644, doi:10.1175/2010JAMC2467.1.

    • Search Google Scholar
    • Export Citation
  • Solomon, A. S., , M. D. Shupe, , P. O. G. Persson, , and H. Morrison, 2011: Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion. Atmos. Chem. Phys., 11, 10 12710 148, doi:10.5194/acp-11-10127-2011.

    • Search Google Scholar
    • Export Citation
  • Solomon, A. S., , M. D. Shupe, , P. O. G. Persson, , H. Morrison, , T. Yamaguchi, , P. M. Caldwell, , and G. de Boer, 2014: The sensitivity of springtime Arctic mixed-phase stratocumulus clouds to surface layer and cloud-top inversion-layer moisture sources. J. Atmos. Sci., 71, 574595, doi:10.1175/JAS-D-13-0179.1.

    • Search Google Scholar
    • Export Citation
  • Sotiropoulou, G., , J. Sedlar, , R. Forbes, , and M. Tjernström, 2016: Summer Arctic clouds in the ECMWF forecast model: An evaluation of cloud parametrization schemes. Quart. J. Roy. Meteor. Soc., 142, 387400, doi:10.1002/qj.2658.

    • Search Google Scholar
    • Export Citation
  • Spreen, G., , L. Kaleschke, , and G. Heygster, 2008: Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res., 113, C02S03, doi:10.1029/2005JC003384.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., , T. Markus, , L. Boisvert, , J. Miller, , and A. Barrett, 2014: Changes in Arctic melt season and implications for sea ice loss. Geophys. Res. Lett., 41, 12161225, doi:10.1002/2013GL058951.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Svensson, G., , and J. Karlsson, 2011: On the Arctic wintertime climate in global climate models. J. Climate, 24, 57575771, doi:10.1175/2011JCLI4012.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. C., , S. Kato, , K.-M. Xu, , and M. Cai, 2015: Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level. J. Geophys. Res. Atmos., 120, 12 65612 678, doi:10.1002/2015JD023520.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., 2005: The summer Arctic boundary layer during the Arctic Ocean Experiment 2001 (AOE-2001). Bound.-Layer Meteor., 117, 536, doi:10.1007/s10546-004-5641-8.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., , and R. G. Graversen, 2009: The vertical structure of the lower Arctic troposphere analysed from observations and the ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 135, 431443, doi:10.1002/qj.380.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., , C. Leck, , P. O. G. Persson, , M. L. Jensen, , S. P. Oncley, , and A. Targino, 2004: The summertime Arctic atmosphere: Meteorological measurements during the Arctic Ocean Experiment 2001. Bull. Amer. Meteor. Soc., 85, 13051321, doi:10.1175/BAMS-85-9-1305.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and et al. , 2005: Modelling the Arctic boundary layer: An evaluation of six ARCMIP regional-scale models using data from the SHEBA project. Bound.-Layer Meteor., 117, 337381, doi:10.1007/s10546-004-7954-z.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., , J. Sedlar, , and M. D. Shupe, 2008: How well do regional climate models reproduce radiation and clouds in the Arctic? J. App. Meteorol. Climatol., 47, 24052422, doi:10.1175/2008JAMC1845.1.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and et al. , 2012: Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS). Atmos. Chem. Phys., 12, 68636889, doi:10.5194/acp-12-6863-2012.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and et al. , 2014: The Arctic Summer Cloud Ocean Study (ASCOS): Overview and experimental design. Atmos. Chem. Phys., 14, 28232869, doi:10.5194/acp-14-2823-2014.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and et al. , 2015: Warm-air advection, air mass transformation and fog causes rapid ice melt. Geophys. Res. Lett., 42, 55945602, doi:10.1002/2015GL064373.

    • Search Google Scholar
    • Export Citation
  • Uttal, T., and et al. , 2002: Surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83, 255276, doi:10.1175/1520-0477(2002)083<0255:SHBOTA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Verlinde, J., and et al. , 2007: The Mixed-Phase Arctic Cloud Experiment. Bull. Amer. Meteor. Soc., 88, 205221, doi:10.1175/BAMS-88-2-205.

    • Search Google Scholar
    • Export Citation
  • Vihma, T., and et al. , 2014: Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: A review. Atmos. Chem. Phys., 14, 94039450, doi:10.5194/acp-14-9403-2014.

    • Search Google Scholar
    • Export Citation
  • Wesslén, C., , M. Tjernström, , D. H. Bromwich, , G. de Boer, , A. M. L. Ekman, , L.-S. Bai, , and S.-H. Wang, 2014: The Arctic summer atmosphere: An evaluation of reanalyses using ASCOS data. Atmos. Chem. Phys., 14, 26052624, doi:10.5194/acp-14-2605-2014.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , D. J. Seidel, , J.-C. Golaz, , C. Deser, , and R. A. Tomas, 2011: Climatological characteristics of Arctic and Antarctic surface-based inversions. J. Climate, 24, 51675186, doi:10.1175/2011JCLI4004.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 161 161 27
PDF Downloads 122 122 18

Atmospheric Conditions during the Arctic Clouds in Summer Experiment (ACSE): Contrasting Open Water and Sea Ice Surfaces during Melt and Freeze-Up Seasons

View More View Less
  • 1 Department of Meteorology, and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
  • | 2 School of Earth and Environment, University of Leeds, Leeds, United Kingdom
  • | 3 National Centre for Atmospheric Science, University of Leeds, Leeds, United Kingdom
  • | 4 NOAA/Earth System Research Laboratory, Boulder, Colorado
  • | 5 Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The Arctic Clouds in Summer Experiment (ACSE) was conducted during summer and early autumn 2014, providing a detailed view of the seasonal transition from ice melt into freeze-up. Measurements were taken over both ice-free and ice-covered surfaces near the ice edge, offering insight into the role of the surface state in shaping the atmospheric conditions. The initiation of the autumn freeze-up was related to a change in air mass, rather than to changes in solar radiation alone; the lower atmosphere cooled abruptly, leading to a surface heat loss. During melt season, strong surface inversions persisted over the ice, while elevated inversions were more frequent over open water. These differences disappeared during autumn freeze-up, when elevated inversions persisted over both ice-free and ice-covered conditions. These results are in contrast to previous studies that found a well-mixed boundary layer persisting in summer and an increased frequency of surface-based inversions in autumn, suggesting that knowledge derived from measurements taken within the pan-Arctic area and on the central ice pack does not necessarily apply closer to the ice edge. This study offers an insight into the atmospheric processes that occur during a crucial period of the year; understanding and accurately modeling these processes is essential for the improvement of ice-extent predictions and future Arctic climate projections.

Corresponding author address: Georgia Sotiropoulou, Dept. of Meteorology, Stockholm University, Arrhenius Väg 16C, SE-106 91 Stockholm, Sweden. E-mail: georgia@misu.su.se

Abstract

The Arctic Clouds in Summer Experiment (ACSE) was conducted during summer and early autumn 2014, providing a detailed view of the seasonal transition from ice melt into freeze-up. Measurements were taken over both ice-free and ice-covered surfaces near the ice edge, offering insight into the role of the surface state in shaping the atmospheric conditions. The initiation of the autumn freeze-up was related to a change in air mass, rather than to changes in solar radiation alone; the lower atmosphere cooled abruptly, leading to a surface heat loss. During melt season, strong surface inversions persisted over the ice, while elevated inversions were more frequent over open water. These differences disappeared during autumn freeze-up, when elevated inversions persisted over both ice-free and ice-covered conditions. These results are in contrast to previous studies that found a well-mixed boundary layer persisting in summer and an increased frequency of surface-based inversions in autumn, suggesting that knowledge derived from measurements taken within the pan-Arctic area and on the central ice pack does not necessarily apply closer to the ice edge. This study offers an insight into the atmospheric processes that occur during a crucial period of the year; understanding and accurately modeling these processes is essential for the improvement of ice-extent predictions and future Arctic climate projections.

Corresponding author address: Georgia Sotiropoulou, Dept. of Meteorology, Stockholm University, Arrhenius Väg 16C, SE-106 91 Stockholm, Sweden. E-mail: georgia@misu.su.se
Save