• Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Baldwin, M. P., , and T. J. Dunkerton, 1998: Quasi-biennial modulation of the Southern Hemisphere stratospheric polar vortex. Geophys. Res. Lett., 25, 33433346, doi:10.1029/98GL02445.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., , and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., , and N. Calvo, 2014: On the relationship between ENSO, stratospheric sudden warmings, and blocking. J. Climate, 27, 47044720, doi:10.1175/JCLI-D-13-00770.1.

    • Search Google Scholar
    • Export Citation
  • Bell, C. J., , L. J. Gray, , A. J. Charlton-Perez, , M. M. Joshi, , and A. A. Scaife, 2009: Stratospheric communication of El Niño teleconnections to European winter. J. Climate, 22, 40834096, doi:10.1175/2009JCLI2717.1.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., , and L. M. Polvani, 2011: El Niño, La Niña, and stratospheric sudden warmings: A reevaluation in light of the observational record. Geophys. Res. Lett., 38, L13807, doi:10.1029/2011GL048084.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., , L. M. Polvani, , and C. Deser, 2014: Separating the stratospheric and tropospheric pathways of El Niño–Southern Oscillation teleconnections. Environ. Res. Lett., 9, 024014, doi:10.1088/1748-9326/9/2/024014.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., and et al. , 2016: The climate-system historical forecast project: Do stratosphere-resolving models make better seasonal climate predictions in boreal winter? Quart. J. Roy. Meteor. Soc., 142, 14131427, doi:10.1002/qj.2743.

    • Search Google Scholar
    • Export Citation
  • Cagnazzo, C., , and E. Manzini, 2009: Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European region. J. Climate, 22, 12231238, doi:10.1175/2008JCLI2549.1.

    • Search Google Scholar
    • Export Citation
  • Calvo, N., , M. A. Giorgetta, , R. Garcia-Herrera, , and E. Manzini, 2009: Nonlinearity of the combined warm ENSO and QBO effects on the Northern Hemisphere polar vortex in MAECHAM5 simulations. J. Geophys. Res., 114, D13109, doi:10.1029/2008JD011445.

    • Search Google Scholar
    • Export Citation
  • Calvo, N., , R. R. Garcia, , W. J. Randel, , and D. R. Marsh, 2010: Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events. J. Atmos. Sci., 67, 23312340, doi:10.1175/2010JAS3433.1.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., , and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, doi:10.1175/JCLI3996.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., , A. H. Butler, , K. Fröhlich, , M. Bittner, , W. A. Müller, , and J. Baehr, 2015: Seasonal predictability over Europe arising from El Niño and stratospheric variability in the MPI-ESM seasonal prediction system. J. Climate, 28, 256271, doi:10.1175/JCLI-D-14-00207.1.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., , D. P. Delisi, , and M. P. Baldwin, 1988: Distribution of major stratospheric warmings in relation to the quasi-biennial oscillation. Geophys. Res. Lett., 15, 136139, doi:10.1029/GL015i002p00136.

    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., Jr., , B. J. Hoskins, , and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616, doi:10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fletcher, C. G., , and P. J. Kushner, 2011: The role of linear interference in the annular mode response to tropical SST forcing. J. Climate, 24, 778794, doi:10.1175/2010JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • Free, M., , and D. J. Seidel, 2009: Observed El Niño–Southern Oscillation temperature signal in the stratosphere. J. Geophys. Res., 114, D23108, doi:10.1029/2009JD012420.

    • Search Google Scholar
    • Export Citation
  • García-Herrera, R., , N. Calvo, , R. R. Garcia, , and M. A. Giorgetta, 2006: Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 Reanalysis data. J. Geophys. Res., 111, D06101, doi:10.1029/2005JD006061.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., , and D. L. Hartmann, 2007: Effects of the El Niño–Southern Oscillation and the quasi-biennial oscillation on polar temperatures in the stratosphere. J. Geophys. Res., 112, D19112, doi:10.1029/2007JD008481.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., , and D. L. Hartmann, 2008: Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res., 113, D18114, doi:10.1029/2008JD009920.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., , A. H. Butler, , D. W. Waugh, , M. M. Hurwitz, , and L. M. Polvani, 2012: Why might stratospheric sudden warmings occur with similar frequency in El Niño and La Niña winters? J. Geophys. Res., 117, D19106, doi:10.1029/2012JD017777.

    • Search Google Scholar
    • Export Citation
  • Harris, I., , P. D. Jones, , T. J. Osborn, , and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations–The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., , A. Kumar, , and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, doi:10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., , and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, doi:10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ineson, S., , and A. A. Scaife, 2009: The role of the stratosphere in the European climate response to El Niño. Nat. Geosci., 2, 3236, doi:10.1038/ngeo381.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and et al. , 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , and Y.-G. Ham, 2011: Are there two types of La Niña? Geophys. Res. Lett., 38, L16704, doi:10.1029/2011GL048237.

  • Li, Y., , and N.-C. Lau, 2013: Influences of ENSO on stratospheric variability, and the descent of stratospheric perturbations into the lower troposphere. J. Climate, 26, 47254748, doi:10.1175/JCLI-D-12-00581.1.

    • Search Google Scholar
    • Export Citation
  • Lu, H., , M. P. Baldwin, , L. J. Gray, , and M. J. Jarvis, 2008: Decadal-scale changes in the effect of the QBO on the northern stratospheric polar vortex. J. Geophys. Res., 113, D10114, doi:10.1029/2007JD009647.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., , M. A. Giorgetta, , M. Esch, , L. Kornblueh, , and E. Roeckner, 2006: The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Climate, 19, 38633881, doi:10.1175/JCLI3826.1.

    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., 1982: How well do we understand the dynamics of stratospheric warmings? J. Meteor. Soc. Japan, 60, 3765. [Available online at https://www.jstage.jst.go.jp/article/jmsj1965/60/1/60_1_37/_pdf.]

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., , L. J. Gray, , and A. J. Charlton-Perez, 2011: The structure and evolution of the stratospheric vortex in response to natural forcings. J. Geophys. Res., 116, D15110, doi:10.1029/2011JD015788.

    • Search Google Scholar
    • Export Citation
  • Moron, V., , and I. Gouirand, 2003: Seasonal modulation of the El Niño–Southern Oscillation relationship with sea level pressure anomalies over the North Atlantic in October–March 1873–1996. Int. J. Climatol., 23, 143155, doi:10.1002/joc.868.

    • Search Google Scholar
    • Export Citation
  • Newman, P. A., , E. R. Nash, , and J. E. Rosenfield, 2001: What controls the temperature of the Arctic stratosphere during the spring? J. Geophys. Res., 106, 19 99920 010, doi:10.1029/2000JD000061.

    • Search Google Scholar
    • Export Citation
  • Nishii, K., , H. Nakamura, , and T. Miyasaka, 2009: Modulations in the planetary wave field induced by upward-propagating Rossby wave packets prior to stratospheric sudden warming events: A case-study. Quart. J. Roy. Meteor. Soc., 135, 3952, doi:10.1002/qj.359.

    • Search Google Scholar
    • Export Citation
  • Nishii, K., , H. Nakamura, , and Y. J. Orsolini, 2010: Cooling of the wintertime Arctic stratosphere induced by the western Pacific teleconnection pattern. Geophys. Res. Lett., 37, L13805, doi:10.1029/2010GL043551.

    • Search Google Scholar
    • Export Citation
  • Nishii, K., , H. Nakamura, , and Y. J. Orsolini, 2011: Geographical dependence observed in blocking high influence on the stratospheric variability through enhancement and suppression of upward planetary-wave propagation. J. Climate, 24, 64086423, doi:10.1175/JCLI-D-10-05021.1.

    • Search Google Scholar
    • Export Citation
  • Palmeiro, F. M., , D. Barriopedro, , R. García-Herrera, , and N. Calvo, 2015: Comparing sudden stratospheric warming definitions in reanalysis data. J. Climate, 28, 68236840, doi:10.1175/JCLI-D-15-0004.1.

    • Search Google Scholar
    • Export Citation
  • Pozo-Vázquez, D., , S. R. Gámiz-Fortis, , J. Tovar-Pescador, , M. J. Esteban-Parra, , and Y. Castro-Díez, 2005: El Niño–Southern Oscillation events and associated European winter precipitation anomalies. Int. J. Climatol., 25, 1731, doi:10.1002/joc.1097.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., , C. Deser, , and L. Sun, 2015: Effects of stratospheric variability on El Niño teleconnections. Environ. Res. Lett., 10, 124021, doi:10.1088/1748-9326/10/12/124021.

    • Search Google Scholar
    • Export Citation
  • Sassi, F., , D. Kinnison, , B. A. Boville, , R. R. Garcia, , and R. Roble, 2004: Effect of El Niño–Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J. Geophys. Res., 109, D17108, doi:10.1029/2003JD004434.

    • Search Google Scholar
    • Export Citation
  • Smith, K. L., , and P. J. Kushner, 2012: Linear interference and the initiation of extratropical stratosphere-troposphere interactions. J. Geophys. Res., 117, D13107, doi:10.1029/2012JD017587.

    • Search Google Scholar
    • Export Citation
  • Taguchi, M., 2016: Connection of predictability of major stratospheric sudden warmings to polar vortex geometry. Atmos. Sci. Lett., 17, 3338, doi:10.1002/asl.595.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and et al. , 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Zhang, W., , L. Wang, , B. Xiang, , L. Qi, , and J. He, 2015: Impacts of two types of La Niña on the NAO during boreal winter. Climate Dyn., 44, 13511366, doi:10.1007/s00382-014-2155-z.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 132 132 12
PDF Downloads 105 105 14

The Stratospheric Pathway of La Niña

View More View Less
  • 1 Departamento de Física de la Tierra II, Universidad Complutense de Madrid, Madrid, Spain
  • | 2 Max Planck Institute for Meteorology, Hamburg, Germany
© Get Permissions
Restricted access

Abstract

A Northern Hemisphere (NH) polar stratospheric pathway for La Niña events is established during wintertime based on reanalysis data for the 1958–2012 period. A robust polar stratospheric response is observed in the NH during strong La Niña events, characterized by a significantly stronger and cooler polar vortex. Significant wind anomalies reach the surface, and a robust impact on the North Atlantic–European (NAE) region is observed. A dynamical analysis reveals that the stronger polar stratospheric winds during La Niña winters are due to reduced upward planetary wave activity into the stratosphere. This finding is the result of destructive interference between the climatological and the anomalous La Niña tropospheric stationary eddies over the Pacific–North American region.

In addition, the lack of a robust stratospheric signature during La Niña winters reported in previous studies is investigated. It is found that this is related to the lower threshold used to detect the events, which signature is consequently more prone to be obscured by the influence of other sources of variability. In particular, the occurrence of stratospheric sudden warmings (SSWs), partly linked to the phase of the quasi-biennial oscillation, modulates the observed stratospheric signal. In the case of La Niña winters defined by a lower threshold, a robust stratospheric cooling is found only in the absence of SSWs. Therefore, these results highlight the importance of using a relatively restrictive threshold to define La Niña events in order to obtain a robust surface response in the NAE region through the stratosphere.

Corresponding author address: Maddalen Iza, Departamento de Física de la Tierra II, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Plaza Ciencias, Avda. Complutense s/n, Ciudad Universitaria, 28040 Madrid, Spain. E-mail: m.iza@ucm.es

Abstract

A Northern Hemisphere (NH) polar stratospheric pathway for La Niña events is established during wintertime based on reanalysis data for the 1958–2012 period. A robust polar stratospheric response is observed in the NH during strong La Niña events, characterized by a significantly stronger and cooler polar vortex. Significant wind anomalies reach the surface, and a robust impact on the North Atlantic–European (NAE) region is observed. A dynamical analysis reveals that the stronger polar stratospheric winds during La Niña winters are due to reduced upward planetary wave activity into the stratosphere. This finding is the result of destructive interference between the climatological and the anomalous La Niña tropospheric stationary eddies over the Pacific–North American region.

In addition, the lack of a robust stratospheric signature during La Niña winters reported in previous studies is investigated. It is found that this is related to the lower threshold used to detect the events, which signature is consequently more prone to be obscured by the influence of other sources of variability. In particular, the occurrence of stratospheric sudden warmings (SSWs), partly linked to the phase of the quasi-biennial oscillation, modulates the observed stratospheric signal. In the case of La Niña winters defined by a lower threshold, a robust stratospheric cooling is found only in the absence of SSWs. Therefore, these results highlight the importance of using a relatively restrictive threshold to define La Niña events in order to obtain a robust surface response in the NAE region through the stratosphere.

Corresponding author address: Maddalen Iza, Departamento de Física de la Tierra II, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Plaza Ciencias, Avda. Complutense s/n, Ciudad Universitaria, 28040 Madrid, Spain. E-mail: m.iza@ucm.es
Save