• Alexander, M. J., , and K. H. Rosenlof, 1996: Nonstationary gravity wave forcing of the stratospheric zonal mean wind. J. Geophys. Res., 101, 23 46523 474, doi:10.1029/96JD02197.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., , J. R. Holton, , and C. B. Leovy, 1987: Middle Atmosphere Dynamics.Academic Press, 489 pp.

  • Bailey, S. M., , A. W. Merkel, , G. E. Thomas, , and D. W. Rusch, 2007: Hemispheric differences in polar mesospheric cloud morphology observed by the student nitric oxide explorer. J. Atmos. Sol.-Terr. Phys., 69, 14071418, doi:10.1016/j.jastp.2007.02.008.

    • Search Google Scholar
    • Export Citation
  • Becker, E., 2003: Frictional heating in global climate models. Mon. Wea. Rev., 131, 508520, doi:10.1175/1520-0493(2003)131<0508:FHIGCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Becker, E., 2004: Direct heating rates associated with gravity wave saturation. J. Atmos. Sol.-Terr. Phys, 66, 683696, doi:10.1016/j.jastp.2004.01.019.

    • Search Google Scholar
    • Export Citation
  • Becker, E., 2012: Dynamical control of the middle atmosphere. Space Sci. Rev., 168, 283314, doi:10.1007/s11214-011-9841-5.

  • Becker, E., , and G. Schmitz, 2003: Climatological effects of orography and land–sea heating contrasts on the gravity wave–driven circulation of the mesosphere. J. Atmos. Sci., 60, 103118, doi:10.1175/1520-0469(2003)060<0103:CEOOAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Becker, E., , and D. C. Fritts, 2006: Enhanced gravity-wave activity and interhemispheric coupling during the MaCWAVE/MIDAS northern summer program 2002. Ann. Geophys., 24, 11751188, doi:10.5194/angeo-24-1175-2006.

    • Search Google Scholar
    • Export Citation
  • Becker, E., , and U. Burkhardt, 2007: Nonlinear horizontal diffusion for GCMs. Mon. Wea. Rev., 135, 14391454, doi:10.1175/MWR3348.1.

  • Becker, E., , and C. McLandress, 2009: Consistent scale interaction of gravity waves in the Doppler spread parameterization. J. Atmos. Sci., 66, 14341449, doi:10.1175/2008JAS2810.1.

    • Search Google Scholar
    • Export Citation
  • Becker, E., , A. Müllemann, , F.-J. Lübken, , H. Körnich, , P. Hoffmann, , and M. Rapp, 2004: High Rossby-wave activity in austral winter 2002: Modulation of the general circulation of the MLT during the MaCWAVE/MIDAS northern summer program. Geophys. Res. Lett., 31, L24S03, doi:10.1029/2004GL019615.

    • Search Google Scholar
    • Export Citation
  • Becker, E., , R. Knöpfel, , and F.-J. Lübken, 2015: Dynamically induced hemispheric differences in the seasonal cycle of the summer polar mesopause. J. Atmos. Sol. Terr. Phys., 129, 128141, doi:10.1016/j.jastp.2015.04.014.

    • Search Google Scholar
    • Export Citation
  • CCCma, 2013: Canadian Center for Climate Modelling and Analysis, CMAM30 - SD, 30-year specified dynamics run. [Available online at http://www.cccma.ec.gc.ca/data/cmam/cmam30/index.shtml.]

  • de Grandpré, J., , S. R. Beagley, , V. I. Fomichev, , E. Griffioen, , J. C. McConnell, , A. S. Medvedev, , and T. G. Shepherd, 2000: Ozone climatology using interactive chemistry: Results from the Canadian Middle Atmosphere Model. J. Geophys. Res., 105, 26 47526 491, doi:10.1029/2000JD900427.

    • Search Google Scholar
    • Export Citation
  • Fomichev, V. I., , W. E. Ward, , S. R. Beagley, , C. McLandress, , J. C. McConnell, , N. A. McFarlane, , and T. G. Shepherd, 2002: Extended Canadian Middle Atmosphere Model: Zonal-mean climatology and physical parameterizations. J. Geophys. Res., 107, ACL 9-1ACL 9-14, doi:10.1029/2001JD000479.

    • Search Google Scholar
    • Export Citation
  • Gumbel, J., , and B. Karlsson, 2011: Intra- and inter-hemispheric coupling effects on the polar summer mesosphere. Geophys. Res. Lett., 38, L14804, doi:10.1029/2011GL047968.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., , I. Jolliffe, , and D. Stephenson, 2007: Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol., 27, 11191152, doi:10.1002/joc.1499.

    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., and et al. , 2014: Vertical structure of stratospheric water vapour trends derived from merged satellite data. Nat. Geosci., 7, 768776, doi:10.1038/ngeo2236.

    • Search Google Scholar
    • Export Citation
  • Hervig, M., , and D. Siskind, 2006: Decadal and inter-hemispheric variability in polar mesospheric clouds, water vapor, and temperature. J. Atmos. Sol.-Terr. Phys., 68, 3041, doi:10.1016/j.jastp.2005.08.010.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997a: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation. J. Atmos. Sol.-Terr. Phys., 59, 371386, doi:10.1016/S1364-6826(96)00079-X.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997b: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi-monochromatic spectra, and implementation. J. Atmos. Sol.-Terr. Phys., 59, 387400, doi:10.1016/S1364-6826(96)00080-6.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., , and B. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 18251842, doi:10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karlsson, B., , H. Körnich, , and J. Gumbel, 2007: Evidence for interhemispheric stratosphere–mesosphere coupling derived from noctilucent cloud properties. Geophys. Res. Lett., 34, L16806, doi:10.1029/2007GL030282.

    • Search Google Scholar
    • Export Citation
  • Karlsson, B., , C. McLandress, , and T. G. Shepherd, 2009: Inter-hemispheric mesospheric coupling in a comprehensive middle atmosphere model. J. Atmos. Sol.-Terr. Phys., 71, 518530, doi:10.1016/j.jastp.2008.08.006.

    • Search Google Scholar
    • Export Citation
  • Körnich, H., , and E. Becker, 2010: A simple model for the interhemispheric coupling of the middle atmosphere circulation. Adv. Space Res., 45, 661668, doi:10.1016/j.asr.2009.11.001.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., , and L. M. Polvani, 2006: Stratosphere–troposphere coupling in a relatively simple AGCM: Impact of the seasonal cycle. J. Climatol., 19, 57215727, doi:10.1175/JCLI4007.1.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., , C. B. Leovy, , and Y. J. Orsolini, 2000: Observed temperature two-day wave and its relatives near the stratopause. J. Atmos. Sci., 57, 16891701, doi:10.1175/1520-0469(2000)057<1689:OTTDWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 97079714, doi:10.1029/JC086iC10p09707.

    • Search Google Scholar
    • Export Citation
  • Liu, H.-L., 2000: Temperature changes due to gravity wave saturation. J. Geophys. Res., 105, 12 32912 336, doi:10.1029/2000JD900054.

  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, doi:10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., , W. E. Ward, , V. I. Fomichev, , K. Semeniuk, , S. R. Beagley, , N. A. McFarlane, , and T. G. Shepherd, 2006: Large-scale dynamics of the mesosphere and lower thermosphere: An analysis using the extended Canadian middle atmosphere model. J. Geophys. Res., 111, D17111, doi:10.1029/2005JD006776.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., , D. A. Plummer, , and T. G. Shepherd, 2014: Technical note: A simple procedure for removing temporal discontinuities in ERA-Interim upper stratospheric temperatures for use in nudged chemistry–climate model simulations. Atmos. Chem. Phys., 14, 15471555, doi:10.5194/acp-14-1547-2014.

    • Search Google Scholar
    • Export Citation
  • Ortland, D. A., , and M. J. Alexander, 2006: Gravity wave influence on the global structure of the diurnal tide in the mesosphere and lower thermosphere. J. Geophys. Res., 111, A10S10, doi:10.1029/2005JA011467.

    • Search Google Scholar
    • Export Citation
  • Pendlebury, D., 2012: A simulation of the quasi-two-day wave and its effect on variability of summertime mesopause temperatures. J. Atmos. Sol.-Terr. Phys., 80, 138151, doi:10.1016/j.jastp.2012.01.006.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., 1996: Summer hemisphere differences in temperature and transport in the lower stratosphere. J. Geophys. Res., 101, 19 12919 136, doi:10.1029/96JD01542.

    • Search Google Scholar
    • Export Citation
  • Schlutow, M., , E. Becker, , and H. Körnich, 2014: Positive definite and mass conserving tracer transport in spectral GCMs. J. Geophys. Res. Atmos., 119, 11 56211 577, doi:10.1002/2014JD021661.

    • Search Google Scholar
    • Export Citation
  • Schwartz, M. J., and et al. , 2008: Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements. J. Geophys. Res., 113, D15S11, doi:10.1029/2007JD008783.

    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., , N. A. McFarlane, , M. Lazare, , J. Li, , and D. Plummer, 2008: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. Phys., 8, 70557074, doi:10.5194/acp-8-7055-2008.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., and et al. , 2014: Reconciliation of halogen-induced ozone loss with the total-column ozone record. Nat. Geosci., 7, 443449, doi:10.1038/ngeo2155.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109, 758766, doi:10.1175/1520-0493(1981)109,0758:AEAAMC.2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , S. Uppala, , D. Dee, , and S. Kobayashi, 2007: Era-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

  • Siskind, D. E., , and J. P. McCormack, 2014: Summer mesospheric warmings and the quasi 2 day wave. Geophys. Res. Lett., 41, 717722, doi:10.1002/2013GL058875.

    • Search Google Scholar
    • Export Citation
  • Siskind, D. E., , S. D. Eckermann, , J. P. McCormack, , M. J. Alexander, , and J. T. Bacmeister, 2003: Hemispheric differences in the temperature of the summertime stratosphere. J. Geophys. Res., 108, 4051, doi:10.1029/2002JD002095.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 48 48 9
PDF Downloads 36 36 8

How Does Interhemispheric Coupling Contribute to Cool Down the Summer Polar Mesosphere?

View More View Less
  • 1 Department of Meteorology, Stockholm University, Stockholm, Sweden
  • | 2 Leibniz Institute of Atmospheric Physics, University of Rostock, Kühlungsborn, Germany
© Get Permissions
Restricted access

Abstract

Interhemispheric coupling is commonly associated with events of high planetary wave activity in the winter stratosphere triggering a heating of the polar mesopause region in the opposite hemisphere. Here, a more fundamental role that this mechanism plays in the absence of planetary wave variability is highlighted. This study focuses directly on the mesospheric part of the coupling chain, which is induced by the gravity wave drag in the winter mesosphere. To investigate the effect that the winter residual flow has on the summertime high-latitude upwelling, the Kühlungsborn Mechanistic General Circulation Model (KMCM) is used to compare a control simulation to runs where the parameterized gravity waves are removed from the winter hemisphere. The model response in the summer mesosphere reveals that the winter mesospheric residual circulation fosters a net (and substantial) cooling of the summer polar mesopause. These results offer an extension of the current view of interhemispheric coupling: from a mode of internal variability to a constant, gravity wave–driven phenomenon that is modulated by planetary wave activity.

Denotes Open Access content.

Corresponding author address: Bodil Karlsson, Dept. of Meteorology, Stockholm University, Stockholm 10691, Sweden. E-mail: bodil@misu.su.se

Abstract

Interhemispheric coupling is commonly associated with events of high planetary wave activity in the winter stratosphere triggering a heating of the polar mesopause region in the opposite hemisphere. Here, a more fundamental role that this mechanism plays in the absence of planetary wave variability is highlighted. This study focuses directly on the mesospheric part of the coupling chain, which is induced by the gravity wave drag in the winter mesosphere. To investigate the effect that the winter residual flow has on the summertime high-latitude upwelling, the Kühlungsborn Mechanistic General Circulation Model (KMCM) is used to compare a control simulation to runs where the parameterized gravity waves are removed from the winter hemisphere. The model response in the summer mesosphere reveals that the winter mesospheric residual circulation fosters a net (and substantial) cooling of the summer polar mesopause. These results offer an extension of the current view of interhemispheric coupling: from a mode of internal variability to a constant, gravity wave–driven phenomenon that is modulated by planetary wave activity.

Denotes Open Access content.

Corresponding author address: Bodil Karlsson, Dept. of Meteorology, Stockholm University, Stockholm 10691, Sweden. E-mail: bodil@misu.su.se
Save