• Anstey, J. A., and et al. , 2013: Multi-model analysis of Northern Hemisphere winter blocking: Model biases and the role of resolution. J. Geophys. Res. Atmos., 118, 39563971, doi:10.1002/jgrd.50231.

    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., , R. Garcia-Herrera, , and R. Trigo, 2010: Application of blocking diagnosis methods to general circulation models. Part I: A novel detection scheme. Climate Dyn., 35, 13731391, doi:10.1007/s00382-010-0767-5.

    • Search Google Scholar
    • Export Citation
  • Berckmans, J., , T. Woollings, , M.-E. Demory, , P.-L. Vidale, , and M. Roberts, 2013: Atmospheric blocking in a high resolution climate model: Influences of mean state, orography and eddy forcing. Atmos. Sci. Lett., 14, 3440, doi:10.1002/asl2.412.

    • Search Google Scholar
    • Export Citation
  • Berner, J., , T. Jung, , and T. Palmer, 2012: Systematic model error: The impact of increased horizontal resolution versus improved stochastic and deterministic parameterizations. J. Climate, 25, 49464962, doi:10.1175/JCLI-D-11-00297.1.

    • Search Google Scholar
    • Export Citation
  • Brayshaw, D., , B. Hoskins, , and M. Blackburn, 2009: The basic ingredients of the North Atlantic storm track. Part I: Land–sea contrast and orography. J. Atmos. Sci., 66, 25392558, doi:10.1175/2009JAS3078.1.

    • Search Google Scholar
    • Export Citation
  • Carrera, M., , R. Wiggins, , and V. Kousky, 2004: Downstream weather impacts associated with atmospheric blocking over the northeast Pacific. J. Climate, 17, 48234839, doi:10.1175/JCLI-3237.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J., , and J. DeVore, 1979: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci., 36, 12051216, doi:10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Andrea, F., and et al. , 1996: Northern hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979-1988 (results from an AMIP diagnostic subproject). WMO WCRP Rep. WCRP-96, 25 pp.

  • D’Andrea, F., and et al. , 1998: Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Climate Dyn., 14, 385407, doi:10.1007/s003820050230.

    • Search Google Scholar
    • Export Citation
  • Davini, P., , C. Cagnazzo, , S. Gualdi, , and A. Navarra, 2012: Bidimensional diagnostics, variability and trends of Northern Hemisphere blocking. J. Climate, 25, 64966509, doi:10.1175/JCLI-D-12-00032.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dole, R., , and N. Gordon, 1983: Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Geographical distribution and regional persistence characteristics. Mon. Wea. Rev., 111, 15671586, doi:10.1175/1520-0493(1983)111<1567:PAOTEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunn-Sigouin, E., , and S.-W. Son, 2013: Northern Hemisphere blocking frequency and duration in the CMIP5 models. J. Geophys. Res. Atmos., 118, 11791188, doi:10.1002/jgrd.50143.

    • Search Google Scholar
    • Export Citation
  • Egger, J., 1978: Dynamics of blocking highs. J. Atmos. Sci., 35, 17881801, doi:10.1175/1520-0469(1978)035<1788:DOBH>2.0.CO;2.

  • Gates, W. L., 1992: AMIP: The Atmospheric Model Intercomparison Project. Bull. Amer. Meteor. Soc., 73, 19621970, doi:10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., and et al. , 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 2955, doi:10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Green, J., 1977: The weather during July 1976: Some dynamical considerations of the drought. Weather, 32, 120126, doi:10.1002/j.1477-8696.1977.tb04532.x.

    • Search Google Scholar
    • Export Citation
  • Gut, A., 2012: Probability: A Graduate Course. Springer, 625 pp.

  • Hoskins, B., , and D. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and et al. , 2010: The ECMWF model climate: Recent progress through improved physical parametrizations. Quart. J. Roy. Meteor. Soc., 136, 11451160, doi:10.1002/qj.634.

    • Search Google Scholar
    • Export Citation
  • Jung, T., and et al. , 2012: High-resolution global climate simulations with the ECMWF model in Project Athena: Experimental design, model climate, and seasonal forecast skill. J. Climate, 25, 31553172, doi:10.1175/JCLI-D-11-00265.1.

    • Search Google Scholar
    • Export Citation
  • Keeley, S., , R. Sutton, , and L. Shaffrey, 2012: The impact of North Atlantic sea surface temperature errors on the simulation of North Atlantic European region climate. Quart. J. Roy. Meteor. Soc., 138, 17741783, doi:10.1002/qj.1912.

    • Search Google Scholar
    • Export Citation
  • Knutti, R., , D. Masson, , and A. Gettelman, 2013: Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett., 40, 11941199, doi:10.1002/grl.50256.

    • Search Google Scholar
    • Export Citation
  • Malguzzi, P., , and P. Malanotte-Rizzoli, 1984: Nonlinear stationary Rossby waves on nonuniform zonal winds and atmospheric blocking. Part I: The analytical theory. J. Atmos. Sci., 41, 26202628, doi:10.1175/1520-0469(1984)041<2620:NSRWON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Masato, G., , B. J. Hoskins, , and T. J. Woollings, 2009: Can the frequency of blocking be described by a red noise process? J. Atmos. Sci., 66, 21432149, doi:10.1175/2008JAS2907.1.

    • Search Google Scholar
    • Export Citation
  • Masato, G., , B. J. Hoskins, , and T. J. Woollings, 2013: Winter and summer Northern Hemisphere blocking in CMIP5 models. J. Climate, 26, 70447059, doi:10.1175/JCLI-D-12-00466.1.

    • Search Google Scholar
    • Export Citation
  • Matsueda, M., , R. Mizuta, , and S. Kusunoki, 2009: Future change in wintertime atmospheric blocking simulated using a 20-km-mesh atmospheric global circulation model. J. Geophys. Res., 114, D12114, doi:10.1029/2009JD011919.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1980: An application of equivalent modons to atmospheric blocking. Dyn. Atmos. Oceans, 5, 4366, doi:10.1016/0377-0265(80)90010-X.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , C. Covey, , K. E. Taylor, , T. Delworth, , R. J. Stouffer, , M. Latif, , B. McAvaney, , and J. F. Mitchell, 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 13831394, doi:10.1175/BAMS-88-9-1383.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., , M. Nakamura, , and J. Anderson, 1997: The role of high- and low-frequency dynamics in blocking formation. Mon. Wea. Rev., 125, 20742093, doi:10.1175/1520-0493(1997)125<2074:TROHAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., , S. Minobe, , and A. Kuwano-Yoshida, 2015: The influence of the Gulf Stream on wintertime European blocking. Climate Dyn., 47, 15451567, doi:10.1007/s00382-015-2919-0.

    • Search Google Scholar
    • Export Citation
  • Pelly, J., , and B. Hoskins, 2003: A new perspective on blocking. J. Atmos. Sci., 60, 743755, doi:10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pithan, F., , T. G. Shepherd, , G. Zappa, , and I. Sandu, 2016: Climate model biases in jet streams, blocking and storm tracks resulting from missing orographic drag. Geophys. Res. Lett., 43, 72317240, doi:10.1002/2016GL069551.

    • Search Google Scholar
    • Export Citation
  • Rayner, N., , D. Parker, , E. Horton, , C. Folland, , L. Alexander, , D. Rowell, , E. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Renwick, J., , and J. Wallace, 1996: Relationships between North Pacific wintertime blocking, El Niño, and the PNA pattern. Mon. Wea. Rev., 124, 20712076, doi:10.1175/1520-0493(1996)124<2071:RBNPWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rex, D., 1950: Blocking action in the middle troposphere and its effect upon regional climate: I. An aerological study of blocking action. Tellus, 2A, 196211, doi:10.1111/j.2153-3490.1950.tb00331.x.

    • Search Google Scholar
    • Export Citation
  • Sampe, T., , H. Nakamura, , A. Goto, , and W. Ohfuchi, 2010: Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J. Climate, 23, 17931814, doi:10.1175/2009JCLI3163.1.

    • Search Google Scholar
    • Export Citation
  • Scaife, A., , T. Woollings, , J. Knight, , G. Martin, , and T. Hinton, 2010: Atmospheric blocking and mean biases in climate models. J. Climate, 23, 61436152, doi:10.1175/2010JCLI3728.1.

    • Search Google Scholar
    • Export Citation
  • Scaife, A., and et al. , 2011: Improved Atlantic winter blocking in a climate model. Geophys. Res. Lett., 38, L23703, doi:10.1029/2011GL049573.

    • Search Google Scholar
    • Export Citation
  • Scherrer, S., , M. Croci-Maspoli, , C. Schwierz, , and C. Appenzeller, 2006: Two-dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic region. Int. J. Climatol., 26, 233249, doi:10.1002/joc.1250.

    • Search Google Scholar
    • Export Citation
  • Schwierz, C., , M. Croci-Maspoli, , and H. Davies, 2004: Perspicacious indicators of atmospheric blocking. Geophys. Res. Lett., 31, L06125, doi:10.1029/2003GL019341.

    • Search Google Scholar
    • Export Citation
  • Shutts, G., 1983: The propagation of eddies in diffluent jetstreams: Eddy vorticity forcing of blocking flow fields. Quart. J. Roy. Meteor. Soc., 109, 737761, doi:10.1002/qj.49710946204.

    • Search Google Scholar
    • Export Citation
  • Taylor, K., , R. Stouffer, , and G. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., , and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365, doi:10.1034/j.1600-0870.1990.t01-2-00003.x.

    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., , E. Tosi, , A. Navarra, , and L. Pedulli, 1994: Northern and Southern Hemisphere seasonal variability of blocking frequency and predictability. Mon. Wea. Rev., 122, 19712003, doi:10.1175/1520-0493(1994)122<1971:NASHSV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., , F. D’Andrea, , E. Tosi, , and E. Roeckner, 1997: Climatology of Northern Hemisphere blocking in the ECHAM model. Climate Dyn., 13, 649666, doi:10.1007/s003820050188.

    • Search Google Scholar
    • Export Citation
  • Tyrlis, E., , and B. Hoskins, 2008: Aspects of a Northern Hemisphere atmospheric blocking climatology. J. Atmos. Sci., 65, 16381652, doi:10.1175/2007JAS2337.1.

    • Search Google Scholar
    • Export Citation
  • Vial, J., , and T. Osborn, 2012: Assessment of atmosphere-ocean general circulation model simulations of winter Northern Hemisphere atmospheric blocking. Climate Dyn., 39, 95112, doi:10.1007/s00382-011-1177-z.

    • Search Google Scholar
    • Export Citation
  • Zappa, G., , G. Masato, , L. Shaffrey, , T. Woollings, , and K. Hodges, 2014: Linking Northern Hemisphere blocking and storm track biases in the CMIP5 climate models. Geophys. Res. Lett., 41, 135139, doi:10.1002/2013GL058480.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 178 178 30
PDF Downloads 133 133 27

Northern Hemisphere Atmospheric Blocking Representation in Global Climate Models: Twenty Years of Improvements?

View More View Less
  • 1 Laboratoire de Météorologie Dynamique/IPSL, Ecole Normale Supérieure, PSL Research University, CNRS, Paris, France
© Get Permissions
Restricted access

Abstract

The correct simulation of midlatitude atmospheric blocking has always been a main concern since the earliest days of numerical modeling of Earth’s atmosphere. To this day blocking represents a considerable source of error for general circulation models from both a numerical weather prediction and a climate perspective. In the present work, 20 years of global climate model (GCM) developments are analyzed from the special point of view of Northern Hemisphere atmospheric blocking simulation. Making use of a series of equivalent metrics, three generations of GCMs are compared. This encompasses a total of 95 climate models, many of which are different—successive—versions of the same model. Results from model intercomparison projects AMIP1 (1992), CMIP3 (2007), and CMIP5 (2012) are taken into consideration. Although large improvements are seen over the Pacific Ocean, only minor advancements have been achieved over the Euro-Atlantic sector. Some of the most recent GCMs still exhibit the same negative bias as 20 years ago in this region, associated with large geopotential height systematic errors. Some individual models, nevertheless, have improved and do show good performances in both sectors. Negligible differences emerge among ocean-coupled or atmosphere-only simulations, suggesting weak relevance of sea surface temperature biases. Conversely, increased horizontal resolution seems to be able to alleviate the Euro-Atlantic blocking bias.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0242.s1.

Corresponding author address: P. Davini, Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure, 24 Rue Lhomond, Paris 75005, France. E-mail: pdavini@lmd.ens.fr

Abstract

The correct simulation of midlatitude atmospheric blocking has always been a main concern since the earliest days of numerical modeling of Earth’s atmosphere. To this day blocking represents a considerable source of error for general circulation models from both a numerical weather prediction and a climate perspective. In the present work, 20 years of global climate model (GCM) developments are analyzed from the special point of view of Northern Hemisphere atmospheric blocking simulation. Making use of a series of equivalent metrics, three generations of GCMs are compared. This encompasses a total of 95 climate models, many of which are different—successive—versions of the same model. Results from model intercomparison projects AMIP1 (1992), CMIP3 (2007), and CMIP5 (2012) are taken into consideration. Although large improvements are seen over the Pacific Ocean, only minor advancements have been achieved over the Euro-Atlantic sector. Some of the most recent GCMs still exhibit the same negative bias as 20 years ago in this region, associated with large geopotential height systematic errors. Some individual models, nevertheless, have improved and do show good performances in both sectors. Negligible differences emerge among ocean-coupled or atmosphere-only simulations, suggesting weak relevance of sea surface temperature biases. Conversely, increased horizontal resolution seems to be able to alleviate the Euro-Atlantic blocking bias.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0242.s1.

Corresponding author address: P. Davini, Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure, 24 Rue Lhomond, Paris 75005, France. E-mail: pdavini@lmd.ens.fr

Supplementary Materials

    • Supplemental Materials (PDF 1.09 MB)
Save