• Barnes, E. A., , and L. M. Polvani, 2013: Response of the midlatitude jets and of their variability to increased greenhouse gases in CMIP5 models. J. Climate, 26, 71177135, doi:10.1175/JCLI-D-12-00536.1.

    • Search Google Scholar
    • Export Citation
  • Bender, F. A.-M., , V. Ramanathan, , and G. Tselioudis, 2012: Changes in extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift. Climate Dyn., 38, 20372053, doi:10.1007/s00382-011-1065-6.

    • Search Google Scholar
    • Export Citation
  • Booth, J. F., , C. M. Naud, , and A. D. Del Genio, 2013: Diagnosing warm frontal cloud formation in a GCM: A novel approach using conditional subsetting. J. Climate, 26, 58275845, doi:10.1175/JCLI-D-12-00637.1.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and et al. , 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Bretherton, C. S., 2015: Insights into low-latitude cloud feedbacks from high-resolution models. Philos. Trans. Roy. Soc. London, 373, 20140415, doi:10.1098/rsta.2014.0415.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., , and D. L. Hartmann, 2015: Connections between clouds, radiation, and midlatitude dynamics: A review. Curr. Climate Change Rep., 1, 94102, doi:10.1007/s40641-015-0010-x.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., , M. D. Zelinka, , and D. L. Hartmann, 2014: The response of the Southern Hemisphere eddy-driven jet to future changes in shortwave radiation in CMIP5. Geophys. Res. Lett., 41, 32443250, doi:10.1002/2014GL060043.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., , D. L. Hartmann, , and M. J. Webb, 2016: Mechanisms of the negative shortwave cloud feedback in middle to high latitudes. J. Climate, 29, 139157, doi:10.1175/JCLI-D-15-0327.1.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., , R. Burgman, , and J. R. Norris, 2009: Observational and model evidence for positive low-level cloud feedback. Science, 325, 460464, doi:10.1126/science.1171255.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Eastman, R., , and S. G. Warren, 2013: A 39-yr survey of cloud changes from land stations worldwide 1971–2009: Long-term trends, relation to aerosols, and expansion of the tropical belt. J. Climate, 26, 12861303, doi:10.1175/JCLI-D-12-00280.1.

    • Search Google Scholar
    • Export Citation
  • Georgakakos, K., , and R. Bras, 1984: A hydrologically useful station precipitation model. 1. Formulation. Water Resour. Res., 20, 15851596, doi:10.1029/WR020i011p01585.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., , and D. W. J. Thompson, 2003: Simulation of recent Southern Hemisphere climate change. Science, 302, 273275, doi:10.1126/science.1087440.

    • Search Google Scholar
    • Export Citation
  • Gordon, N. D., , J. R. Norris, , C. P. Weaver, , and S. A. Klein, 2005: Cluster analysis of cloud regimes and characteristic dynamics of midlatitude synoptic systems in observations and a model. J. Geophys. Res., 110, D15S17, doi:10.1029/2004JD005027.

    • Search Google Scholar
    • Export Citation
  • Govekar, P. D., , C. Jakob, , and J. Catto, 2014: The relationship between clouds and dynamics in Southern Hemisphere extratropical cyclones in the real world and a climate model. J. Geophys. Res. Atmos., 119, 66096628, doi:10.1002/2013JD020699.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., , and L. M. Polvani, 2014: Southern Hemisphere cloud–dynamics biases in CMIP5 models and their implications for climate projections. J. Climate, 27, 60746092, doi:10.1175/JCLI-D-14-00113.1.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., , L. M. Polvani, , G. Tselioudis, , Y. Wu, , and M. D. Zelinka, 2013: The ozone hole indirect effect: Cloud radiative anomalies accompanying the poleward shift of the eddy-driven jet in the Southern Hemisphere. Geophys. Res. Lett., 40, 36883692, doi:10.1002/grl.50675.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, doi:10.1126/science.269.5224.676.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., , B. Medeiros, , Y.-T. Hwang, , A. Gettelman, , J. Perket, , and M. G. Flanner, 2014: Processes controlling Southern Ocean shortwave climate feedbacks in CESM. Geophys. Res. Lett., 41, 616622, doi:10.1002/2013GL058315.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127, 25142531, doi:10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , Y. Zhang, , M. D. Zelinka, , R. Pincus, , J. Boyle, , and P. J. Gleckler, 2013: Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. J. Geophys. Res. Atmos., 118, 13291342, doi:10.1002/jgrd.50141.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., , I. M. Held, , and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249, doi:10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., , and M. W. Crane, 1995: A satellite view of the synoptic-scale organization of cloud properties in midlatitude and tropical circulation systems. Mon. Wea. Rev., 123, 19842006, doi:10.1175/1520-0493(1995)123<1984:ASVOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., , and M. W. Crane, 1997: Comparing satellite and surface observations of cloud patterns in synoptic-scale circulation systems. Mon. Wea. Rev., 125, 31723189, doi:10.1175/1520-0493(1997)125<3172:CSASOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, Y., , D. W. J. Thompson, , Y. Huang, , and M. Zhang, 2014a: Observed linkages between the northern annular mode/North Atlantic Oscillation, cloud incidence, and cloud radiative forcing. Geophys. Res. Lett., 41, 16811688, doi:10.1002/2013GL059113.

    • Search Google Scholar
    • Export Citation
  • Li, Y., , D. W. J. Thompson, , G. L. Stephens, , and S. Bony, 2014b: A global survey of the instantaneous linkages between cloud vertical structure and large-scale climate. J. Geophys. Res. Atmos., 119, 37703792, doi:10.1002/2013JD020669.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , S. Kato, , W. Su, , T. Wong, , F. G. Rose, , D. R. Doelling, , J. R. Norris, , and X. Huang, 2012: Advances in understanding top-of-atmosphere radiation variability from satellite observations. Surv. Geophys., 33, 359385, doi:10.1007/s10712-012-9175-1.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., , and B. Stevens, 2011: Revealing differences in GCM representations of low clouds. Climate Dyn., 36, 385399, doi:10.1007/s00382-009-0694-5.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., , and L. Nuijens, 2016: Clouds at Barbados are representative of clouds across the trade wind regions in observations and climate models. Proc. Natl. Acad. Sci. USA, 113, E3062E3070, doi:10.1073/pnas.1521494113.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., , and Y. Fouquart, 1986: The overlapping of cloud layers in shortwave radiation parameterizations. J. Atmos. Sci., 43, 321328, doi:10.1175/1520-0469(1986)043<0321:TOOCLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Myers, T. A., , and J. R. Norris, 2013: Observational evidence that enhanced subsidence reduces subtropical marine boundary layer cloudiness. J. Climate, 26, 75077524, doi:10.1175/JCLI-D-12-00736.1.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., , and S. F. Iacobellis, 2005: North Pacific cloud feedbacks inferred from synoptic-scale dynamic and thermodynamic relationships. J. Climate, 18, 48624878, doi:10.1175/JCLI3558.1.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., , R. J. Allen, , A. T. Evan, , M. D. Zelinka, , C. W. O’Dell, , and S. A. Klein, 2016: Evidence for climate change in the satellite cloud record. Nature, 536, 7275, doi:10.1038/nature18273.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., , S. Platnick, , S. A. Ackerman, , R. S. Hemler, , and R. J. P. Hoffmann, 2012: Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J. Climate, 25, 46994720, doi:10.1175/JCLI-D-11-00267.1.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , D. W. Waugh, , G. J. P. Correa, , and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812, doi:10.1175/2010JCLI3772.1.

    • Search Google Scholar
    • Export Citation
  • Qu, X., , A. Hall, , S. A. Klein, , and P. M. Caldwell, 2014: On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. Climate Dyn., 42, 26032626, doi:10.1007/s00382-013-1945-z.

    • Search Google Scholar
    • Export Citation
  • Qu, X., , A. Hall, , S. A. Klein, , and A. M. DeAngelis, 2015: Positive tropical marine low- cloud cover feedback inferred from cloud-controlling factors. Geophys. Res. Lett., 42, 77677775, doi:10.1002/2015GL065627.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., , R. D. Cess, , E. F. Harrison, , P. Minnis, , B. R. Barkstrom, , E. Ahmad, , and D. Hartmann, 1989: Cloud radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243, 5763, doi:10.1126/science.243.4887.57.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612288, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simpson, I., , T. Shaw, , and R. Seager, 2014: A diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming. J. Atmos. Sci., 71, 24892515, doi:10.1175/JAS-D-13-0325.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., , and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, doi:10.1126/science.1069270.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., , B. Lipat, , D. Konsta, , K. Grise, , and L. Polvani, 2016: Midlatitude cloud shifts, their primary link to the Hadley cell, and their diverse radiative effects. Geophys. Res. Lett., 43, 45944601, doi:10.1002/2016GL068242.

    • Search Google Scholar
    • Export Citation
  • Wall, C. J., , and D. L. Hartmann, 2015: On the influence of poleward jet shift on shortwave cloud feedback in global climate models. J. Adv. Model. Earth Syst., 7, 20442059, doi:10.1002/2015MS000520.

    • Search Google Scholar
    • Export Citation
  • Weare, B. C., 2000: Near-global observations of low clouds. J. Climate, 13, 12551268, doi:10.1175/1520-0442(2000)013<1255:NGOOLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., , and V. Ramanathan, 1997: Relationships between large-scale vertical velocity, static stability, and cloud radiative forcing over Northern Hemisphere extratropical oceans. J. Climate, 10, 28712887, doi:10.1175/1520-0442(1997)010<2871:RBLSVV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, R., , and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, doi:10.1175/JCLI3988.1.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., , S. A. Klein, , and D. L. Hartmann, 2012: Computing and partitioning cloud feedbacks using cloud property histograms. Part I: Cloud radiative kernels. J. Climate, 25, 37153735, doi:10.1175/JCLI-D-11-00248.1.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., , S. A. Klein, , K. E. Taylor, , T. Andrews, , M. J. Webb, , J. M. Gregory, , and P. M. Forster, 2013: Contributions of different cloud types to feedbacks and rapid adjustments in CMIP5. J. Climate, 26, 50075027, doi:10.1175/JCLI-D-12-00555.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and et al. , 2012: Regional assessment of the parameter-dependent performance of CAM4 in simulating tropical clouds. Geophys. Res. Lett., 39, L14708, doi:10.1029/2012GL052355.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 72 72 17
PDF Downloads 64 64 21

Understanding the Varied Influence of Midlatitude Jet Position on Clouds and Cloud Radiative Effects in Observations and Global Climate Models

View More View Less
  • 1 Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

This study examines the dynamical mechanisms responsible for changes in midlatitude clouds and cloud radiative effects (CRE) that occur in conjunction with meridional shifts in the jet streams over the North Atlantic, North Pacific, and Southern Oceans. When the midlatitude jet shifts poleward, extratropical cyclones and their associated upward vertical velocity anomalies closely follow. As a result, a poleward jet shift contributes to a poleward shift in high-topped storm-track clouds and their associated longwave CRE. However, when the jet shifts poleward, downward vertical velocity anomalies increase equatorward of the jet, contributing to an enhancement of the boundary layer estimated inversion strength (EIS) and an increase in low cloud amount there. Because shortwave CRE depends on the reflection of solar radiation by clouds in all layers, the shortwave cooling effects of midlatitude clouds increase with both upward vertical velocity anomalies and positive EIS anomalies. Over midlatitude oceans where a poleward jet shift contributes to positive EIS anomalies but downward vertical velocity anomalies, the two effects cancel, and net observed changes in shortwave CRE are small.

Global climate models generally capture the observed anomalies associated with midlatitude jet shifts. However, there is large intermodel spread in the shortwave CRE anomalies, with a subset of models showing a large shortwave cloud radiative warming over midlatitude oceans with a poleward jet shift. In these models, midlatitude shortwave CRE is sensitive to vertical velocity perturbations, but the observed sensitivity to EIS perturbations is underestimated. Consequently, these models might incorrectly estimate future midlatitude cloud feedbacks in regions where appreciable changes in both vertical velocity and EIS are projected.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Kevin M. Grise, Department of Environmental Sciences, University of Virginia, 291 McCormick Road, P.O. Box 400123, Charlottesville, VA 22904-4123. E-mail: kmg3r@virginia.edu

Abstract

This study examines the dynamical mechanisms responsible for changes in midlatitude clouds and cloud radiative effects (CRE) that occur in conjunction with meridional shifts in the jet streams over the North Atlantic, North Pacific, and Southern Oceans. When the midlatitude jet shifts poleward, extratropical cyclones and their associated upward vertical velocity anomalies closely follow. As a result, a poleward jet shift contributes to a poleward shift in high-topped storm-track clouds and their associated longwave CRE. However, when the jet shifts poleward, downward vertical velocity anomalies increase equatorward of the jet, contributing to an enhancement of the boundary layer estimated inversion strength (EIS) and an increase in low cloud amount there. Because shortwave CRE depends on the reflection of solar radiation by clouds in all layers, the shortwave cooling effects of midlatitude clouds increase with both upward vertical velocity anomalies and positive EIS anomalies. Over midlatitude oceans where a poleward jet shift contributes to positive EIS anomalies but downward vertical velocity anomalies, the two effects cancel, and net observed changes in shortwave CRE are small.

Global climate models generally capture the observed anomalies associated with midlatitude jet shifts. However, there is large intermodel spread in the shortwave CRE anomalies, with a subset of models showing a large shortwave cloud radiative warming over midlatitude oceans with a poleward jet shift. In these models, midlatitude shortwave CRE is sensitive to vertical velocity perturbations, but the observed sensitivity to EIS perturbations is underestimated. Consequently, these models might incorrectly estimate future midlatitude cloud feedbacks in regions where appreciable changes in both vertical velocity and EIS are projected.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Kevin M. Grise, Department of Environmental Sciences, University of Virginia, 291 McCormick Road, P.O. Box 400123, Charlottesville, VA 22904-4123. E-mail: kmg3r@virginia.edu
Save