• Andrews, T., , M. Doutriaux-Boucher, , O. Boucher, , and P. M. Forster, 2011: A regional and global analysis of carbon dioxide physiological forcing and its impact on climate. Climate Dyn., 36, 783792, doi:10.1007/s00382-010-0742-1.

    • Search Google Scholar
    • Export Citation
  • Berg, A. M., and et al. , 2016: Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Climate Change, 6, 869874, doi:10.1038/nclimate3029.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2000: Idealized model for equilibrium boundary layer over land. J. Hydrometeor., 1, 507523, doi:10.1175/1525-7541(2000)001<0507:IMFEBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, doi:10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., , and D. Entekhabi, 1995: An analytic approach to modeling land-atmosphere interaction: 1. Construct and equilibrium behavior. Water Resour. Res., 31, 619632, doi:10.1029/94WR01772.

    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., , and P. A. O’Gorman, 2013a: Land–ocean warming contrast over a wide range of climates: Convective quasi-equilibrium theory and idealized simulations. J. Climate, 26, 40004016, doi:10.1175/JCLI-D-12-00262.1.

    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., , and P. A. O’Gorman, 2013b: Link between land-ocean warming contrast and surface relative humidities in simulations with coupled climate models. Geophys. Res. Lett., 40, 52235227, doi:10.1002/grl.50971.

    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., , and P. A. O’Gorman, 2015: The response of precipitation minus evapotranspiration to climate warming: Why the “wet-get-wetter, dry-get-drier” scaling does not hold over land. J. Climate, 28, 80788092, doi:10.1175/JCLI-D-15-0369.1.

    • Search Google Scholar
    • Export Citation
  • Cao, L., , G. Bala, , K. Caldeira, , R. Nemani, , and G. Ban-Weiss, 2010: Importance of carbon dioxide physiological forcing to future climate change. Proc. Natl. Acad. Sci. USA, 107, 95139518, doi:10.1073/pnas.0913000107.

    • Search Google Scholar
    • Export Citation
  • Chadwick, R., , I. Boutle, , and G. Martin, 2013: Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. J. Climate, 26, 38033822, doi:10.1175/JCLI-D-12-00543.1.

    • Search Google Scholar
    • Export Citation
  • Chadwick, R., , P. Good, , and K. M. Willett, 2016: A simple moisture advection model of specific humidity change over land in response to SST warming. J. Climate, 29, 76137632, doi:10.1175/JCLI-D-16-0241.1.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and et al. , 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Cronin, T. W., 2013: A sensitivity theory for the equilibrium boundary layer over land. J. Adv. Model. Earth Syst., 5, 764784, doi:10.1002/jame.20048.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Recent climatology, variability, and trends in global surface humidity. J. Climate, 19, 35893606, doi:10.1175/JCLI3816.1.

    • Search Google Scholar
    • Export Citation
  • De Jeu, R. A. M., , W. Wagner, , T. R. H. Holmes, , A. J. Dolman, , N. C. Van De Giesen, , and J. Friesen, 2008: Global soil moisture patterns observed by space borne microwave radiometers and scatterometers. Surv. Geophys., 29, 399420, doi:10.1007/s10712-008-9044-0.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64, 19591976, doi:10.1175/JAS3935.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., , I. M. Held, , and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, doi:10.1175/JAS3753.1.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , and S. Feng, 2014: Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos., 119, 78637875, doi:10.1002/2014JD021608.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441475, doi:10.1146/annurev.energy.25.1.441.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Joshi, M. M., , J. M. Gregory, , M. J. Webb, , D. M. H. Sexton, , and T. C. Johns, 2008: Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Climate Dyn., 30, 455465, doi:10.1007/s00382-007-0306-1.

    • Search Google Scholar
    • Export Citation
  • Laîné, A., , H. Nakamura, , K. Nishii, , and T. Miyasaka, 2014: A diagnostic study of future evaporation changes projected in CMIP5 climate models. Climate Dyn., 42, 27452761, doi:10.1007/s00382-014-2087-7.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., 1969: Climate and the ocean circulation. Mon. Wea. Rev., 97, 739774, doi:10.1175/1520-0493(1969)097<0739:CATOC>2.3.CO;2.

  • Manabe, S., , R. J. Stouffer, , M. J. Spelman, , and K. Bryan, 1991: Transient responses of a coupled ocean–atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response. J. Climate, 4, 785818, doi:10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2012: Sensitivity of tropical precipitation extremes to climate change. Nat. Geosci., 5, 697700, doi:10.1038/ngeo1568.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., , and T. Schneider, 2008: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 57975806, doi:10.1175/2008JCLI2099.1.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., , and C. J. Muller, 2010: How closely do changes in surface and column water vapor follow Clausius–Clapeyron scaling in climate change simulations? Environ. Res. Lett., 5, 025207, doi:10.1088/1748-9326/5/2/025207.

    • Search Google Scholar
    • Export Citation
  • Piao, S., , P. Friedlingstein, , P. Ciais, , N. de Noblet-Ducoudré, , D. Labat, , and S. Zaehle, 2007: Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl. Acad. Sci. USA, 104, 15 24215 247, doi:10.1073/pnas.0707213104.

    • Search Google Scholar
    • Export Citation
  • Richter, I., , and S.-P. Xie, 2008: Muted precipitation increase in global warming simulations: A surface evaporation perspective. J. Geophys. Res., 113, D24118, doi:10.1029/2008JD010561.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., , and R. G. Jones, 2006: Causes and uncertainty of future summer drying over Europe. Climate Dyn., 27, 281299, doi:10.1007/s00382-006-0125-9.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and et al. , 2005: Amplification of surface temperature trends and variability in the tropical atmosphere. Science, 309, 15511556, doi:10.1126/science.1114867.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., , P. A. O’Gorman, , and X. J. Levine, 2010: Water vapor and the dynamics of climate changes. Rev. Geophys., 48, RG3001, doi:10.1029/2009RG000302.

    • Search Google Scholar
    • Export Citation
  • Sellers, P. J., and et al. , 1996: Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science, 271, 14021405, doi:10.1126/science.271.5254.1402.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., , T. Corti, , E. L. Davin, , M. Hirschi, , E. B. Jaeger, , I. Lehner, , B. Orlowsky, , and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, doi:10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and et al. , 2013: Impact of soil moisture–climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Geophys. Res. Lett., 40, 52125217, doi:10.1002/grl.50956.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., , and M. Huber, 2010: An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. USA, 107, 95529555, doi:10.1073/pnas.0913352107.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., , and Q. Fu, 2014: A drier future? Science, 343, 737739, doi:10.1126/science.1247620.

  • Simmons, A. J., , K. M. Willett, , P. D. Jones, , P. W. Thorne, , and D. P. Dee, 2010: Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res., 115, D01110, doi:10.1029/2009JD012442.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., , B. Dong, , and J. M. Gregory, 2007: Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett., 34, L02701, doi:10.1029/2006GL028164.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, doi:10.1175/JCLI4258.1.

    • Search Google Scholar
    • Export Citation
  • Willett, K. M., , P. D. Jones, , N. P. Gillett, , and P. W. Thorne, 2008: Recent changes in surface humidity: Development of the HadCRUH dataset. J. Climate, 21, 53645383, doi:10.1175/2008JCLI2274.1.

    • Search Google Scholar
    • Export Citation
  • Willett, K. M., , R. J. H. Dunn, , P. W. Thorne, , S. Bell, , M. De Podesta, , D. E. Parker, , P. D. Jones, , and C. N. Williams Jr., 2014: HadISDH land surface multi-variable humidity and temperature record for climate monitoring. Climate Past, 10, 19832006, doi:10.5194/cp-10-1983-2014.

    • Search Google Scholar
    • Export Citation
  • Willett, K. M., , D. I. Berry, , and A. J. Simmons, 2015: Surface humidity [in “State of the Climate in 2014”]. Bull. Amer. Meteor. Soc., 96 (12), S20S22.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 857 857 176
PDF Downloads 487 487 146

Understanding Decreases in Land Relative Humidity with Global Warming: Conceptual Model and GCM Simulations

View More View Less
  • 1 ETH Zürich, Zurich, Switzerland
  • | 2 Massachusetts Institute of Technology, Cambridge, Massachusetts
© Get Permissions
Restricted access

Abstract

Climate models simulate a strong land–ocean contrast in the response of near-surface relative humidity to global warming; relative humidity tends to increase slightly over oceans but decrease substantially over land. Surface energy balance arguments have been used to understand the response over ocean but are difficult to apply over more complex land surfaces. Here, a conceptual box model is introduced, involving atmospheric moisture transport between the land and ocean and surface evapotranspiration, to investigate the decreases in land relative humidity as the climate warms. The box model is applied to simulations with idealized and full-complexity (CMIP5) general circulation models, and it is found to capture many of the features of the simulated changes in land humidity. The simplest version of the box model gives equal fractional increases in specific humidity over land and ocean. This relationship implies a decrease in land relative humidity given the greater warming over land than ocean and modest changes in ocean relative humidity, consistent with a mechanism proposed previously. When evapotranspiration is included, it is found to be of secondary importance compared to ocean moisture transport for the increase in land specific humidity, but it plays an important role for the decrease in land relative humidity. For the case of a moisture forcing over land, such as from stomatal closure, the response of land relative humidity is strongly amplified by the induced change in land surface–air temperature, and this amplification is quantified using a theory for the link between land and ocean temperatures.

Corresponding author address: Michael P. Byrne, ETH Zürich, Sonneggstrasse 5, 8092 Zurich, Switzerland. E-mail: michael.byrne@erdw.ethz.ch

Abstract

Climate models simulate a strong land–ocean contrast in the response of near-surface relative humidity to global warming; relative humidity tends to increase slightly over oceans but decrease substantially over land. Surface energy balance arguments have been used to understand the response over ocean but are difficult to apply over more complex land surfaces. Here, a conceptual box model is introduced, involving atmospheric moisture transport between the land and ocean and surface evapotranspiration, to investigate the decreases in land relative humidity as the climate warms. The box model is applied to simulations with idealized and full-complexity (CMIP5) general circulation models, and it is found to capture many of the features of the simulated changes in land humidity. The simplest version of the box model gives equal fractional increases in specific humidity over land and ocean. This relationship implies a decrease in land relative humidity given the greater warming over land than ocean and modest changes in ocean relative humidity, consistent with a mechanism proposed previously. When evapotranspiration is included, it is found to be of secondary importance compared to ocean moisture transport for the increase in land specific humidity, but it plays an important role for the decrease in land relative humidity. For the case of a moisture forcing over land, such as from stomatal closure, the response of land relative humidity is strongly amplified by the induced change in land surface–air temperature, and this amplification is quantified using a theory for the link between land and ocean temperatures.

Corresponding author address: Michael P. Byrne, ETH Zürich, Sonneggstrasse 5, 8092 Zurich, Switzerland. E-mail: michael.byrne@erdw.ethz.ch
Save