• Bao, Q., 2011: Projected changes in Asian summer monsoon in RCP scenarios of CMIP5. Atmos. Oceanic Sci. Lett., 5, 4348, doi:10.1080/16742834.2012.11446959.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., , Y. Guo, , and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. Geophys. Res. Lett., 117, D23118, doi:10.1029/2012JD018578.

    • Search Google Scholar
    • Export Citation
  • Chen, H. P., 2013: Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models. Chin. Sci. Bull., 58, 14621472, doi:10.1007/s11434-012-5612-2.

    • Search Google Scholar
    • Export Citation
  • Chen, H. P., , and J. Q. Sun, 2013: Projected change in East Asian summer monsoon precipitation under RCP scenario. Meteor. Atmos. Phys., 121, 5577, doi:10.1007/s00703-013-0257-5.

    • Search Google Scholar
    • Export Citation
  • Chen, H. P., , J. Q. Sun, , X. L. Chen, , and W. Zhou, 2012: CGCM projections of heavy rainfall events in China. Int. J. Climatol., 32, 441450, doi:10.1002/joc.2278.

    • Search Google Scholar
    • Export Citation
  • Chen, W. L., , Z. H. Jiang, , and L. Li, 2011: Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs. J. Climate, 24, 47414756, doi:10.1175/2011JCLI4102.1.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., , Z. Wang, , and Y. Sun, 2008: Inter‐decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Int. J. Climatol., 28, 11391161, doi:10.1002/joc.1615.

    • Search Google Scholar
    • Export Citation
  • Frich, P., , L. V. Alexander, , P. Della-Marta, , B. Gleason, , M. Haylock, , A. M. G. Klein Tank, , and T. Peterson, 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Res., 19, 193212, doi:10.3354/cr019193.

    • Search Google Scholar
    • Export Citation
  • Furrer, R., , R. Knutti, , S. R. Sain, , D. W. Nychka, , and G. A. Meehl, 2007: Spatial patterns of probabilistic temperature change projections from a multivariate Bayesian analysis. Geophys. Res. Lett., 34, L06711, doi:10.1029/2006GL027754.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., , J. S. Fu, , J. B. Drake, , Y. Liu, , and J. F. Lamarque, 2012: Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system. Environ. Res. Lett., 7, 044025, doi:10.1088/1748-9326/7/4/044025.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., , and L. O. Mearns, 2002: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging” (REA) method. J. Climate, 15, 11411158, doi:10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., , and L. O. Mearns, 2003: Probability of regional climate change based on the reliability ensemble averaging (REA) method. Geophys. Res. Lett., 30, 1629, doi:10.1029/2003GL017130.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., , and X. Bi, 2005: Updated regional precipitation and temperature changes for the 21st century from ensembles of recent AOGCM simulations. Geophys. Res. Lett., 32, 365370, doi:10.1029/2005GL024288.

    • Search Google Scholar
    • Export Citation
  • Ha, K. J., , S. K. Park, , and K. Y. Kim, 2005: On interannual characteristics of climate prediction center merged analysis precipitation over the Korean peninsula during the summer monsoon season. Int. J. Climatol., 25, 99116, doi:10.1002/joc.1116.

    • Search Google Scholar
    • Export Citation
  • He, C., , and T. Zhou, 2015: Responses of the western North Pacific subtropical high to global warming under RCP4.5 and RCP8.5 scenarios projected by 33 CMIP5 models: The dominance of tropical Indian Ocean–tropical western Pacific SST gradient. J. Climate, 28, 365380, doi:10.1175/JCLI-D-13-00494.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, D. B., , and Z. P. Tian, 2013: East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models. Chin. Sci. Bull., 58, 14271435, doi:10.1007/s11434-012-5533-0.

    • Search Google Scholar
    • Export Citation
  • Jiang, Z., , J. Song, , L. Li, , W. L. Chen, , Z. Wang, , and J. Wang, 2012: Extreme climate events in China: IPCC-AR4 model evaluation and projection. Climatic Change, 110, 385401, doi:10.1007/s10584-011-0090-0.

    • Search Google Scholar
    • Export Citation
  • Jiang, Z., , W. Li, , J. J. Xu, , and L. Li, 2015: Extreme precipitation indices over China in CMIP5 models. Part I: Model evaluation. J. Climate, 28, 86038619, doi:10.1175/JCLI-D-15-0099.1.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., , F. W. Zwiers, , X. Zhang, , and M. Wehner, 2013: Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345357, doi:10.1007/s10584-013-0705-8.

    • Search Google Scholar
    • Export Citation
  • Kusunoki, S., , and O. Arakawa, 2012: Change in the precipitation intensity of the East Asian summer monsoon projected by CMIP3 models. Climate Dyn., 38, 20552072, doi:10.1007/s00382-011-1234-7.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., , L. O. Mearns, , F. Giorgi, , and R. L. Wilb, 2003: Regional climate research: Needs and opportunities. Bull. Amer. Meteor. Soc., 84, 8995, doi:10.1175/BAMS-84-1-89.

    • Search Google Scholar
    • Export Citation
  • Li, B., , and T. J. Zhou, 2010: Projected climate change over China under SRES A1B scenario: Multi-model ensemble and uncertainties (in Chinese). Adv. Climate Change Res., 6, 270276.

    • Search Google Scholar
    • Export Citation
  • Li, H., , L. Feng, , and T. Zhou, 2011: Multi-model projection of July–August climate extreme changes over China under CO2 doubling. Part I: Precipitation. Acta Meteor. Sin., 28, 433477, doi:10.1007/s00376-010-0013-4.

    • Search Google Scholar
    • Export Citation
  • Li, J., , Q. Zhang, , Y. D. Chen, , and V. P. Singh, 2013: GCMs‐based spatiotemporal evolution of climate extremes during the 21st century in China. J. Geophys. Res. Atmos., 118, 11 01711 035, doi:10.1002/jgrd.50851.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and et al. , 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846.

    • Search Google Scholar
    • Export Citation
  • Moise, A. F., , and D. A. Hudson, 2008: Probabilistic predictions of climate change for Australia and southern Africa using the reliability ensemble average of IPCC CMIP3 model simulations. J. Geophys. Res., 113, 99119, doi:10.1029/2007JD009250.

    • Search Google Scholar
    • Export Citation
  • Murphy, J. M., , D. M. Sexton, , D. N. Barnett, , G. S. Jones, , M. J. Webb, , M. Collins, , and D. A. Stainforth, 2004: Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768772, doi:10.1038/nature02771.

    • Search Google Scholar
    • Export Citation
  • Orlowsky, B., , and S. I. Seneviratne, 2012: Global changes in extreme events: Regional and seasonal dimension. Climatic Change, 110, 669696, doi:10.1007/s10584-011-0122-9.

    • Search Google Scholar
    • Export Citation
  • Schmittner, A., , M. Latif, , and B. Schneider, 2005: Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys. Res. Lett., 32, L23710, doi:10.1029/2005GL024368.

    • Search Google Scholar
    • Export Citation
  • Seo, K. H., , J. Ok, , J. H. Son, , and D. H. Cha, 2013: Assessing future changes in the East Asian summer monsoon using CMIP5 coupled models. J. Climate, 26, 76627675, doi:10.1175/JCLI-D-12-00694.1.

    • Search Google Scholar
    • Export Citation
  • Shongwe, M. E., , G. J. Van Oldenborgh, , B. De Boer, , C. A. S. Coelho, , and M. K. Van Aalst, 2009: Projected changes in mean and extreme precipitation in Africa under global warming. Part I: Southern Africa. J. Climate, 22, 38193837, doi:10.1175/2009JCLI2317.1.

    • Search Google Scholar
    • Export Citation
  • Sillmann, J., , V. V. Kharin, , F. W. Zwiers, , X. Zhang, , and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos., 118, 24732493, doi:10.1002/jgrd.50188.

    • Search Google Scholar
    • Export Citation
  • Swain, S., , and K. Hayhoe, 2015: CMIP5 projected changes in spring and summer drought and wet conditions over North America. Climate Dyn., 44, 27372750, doi:10.1007/s00382-014-2255-9.

    • Search Google Scholar
    • Export Citation
  • Thibeault, J. M., , and A. Seth, 2014: Changing climate extremes in the Northeast United States: Observations and projections from CMIP5. Climatic Change, 127, 273287, doi:10.1007/s10584-014-1257-2.

    • Search Google Scholar
    • Export Citation
  • Tian, D., , Y. Guo, , and W. J. Dong, 2015: Future changes and uncertainties in temperature and precipitation over China based on CMIP5 models. Adv. Atmos. Sci., 32, 487496, doi:10.1007/s00376-014-4102-7.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , and G. A. Vecchi, 2012: Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models. Nat. Climate Change, 2, 604607, doi:10.1038/nclimate1530.

    • Search Google Scholar
    • Export Citation
  • Wang, H. J., 2001: The weakening of the Asian monsoon circulation after the end of 1970’s. Adv. Atmos. Sci., 18, 376386, doi:10.1007/BF02919316.

    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., 2008: Calculation of probability density functions for temperature and precipitation change under global warming. J. Geophys. Res., 113, 259269, doi:10.1029/2007JD009254.

    • Search Google Scholar
    • Export Citation
  • Xu, C. H., , and Y. Xu, 2012: The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble. Atmos. Oceanic Sci. Lett., 5, 527533, doi:10.1080/16742834.2012.11447042.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., , X. J. Gao, , and F. Giorgi, 2010: Upgrades to the reliability ensemble averaging method for producing probabilistic climate-change projections. Climate Res., 41, 6181, doi:10.3354/cr00835.

    • Search Google Scholar
    • Export Citation
  • Yang, H., , Z. Jiang, , and L. Li, 2016: Biases and improvements in three dynamical downscaling climate simulations over China. Climate Dyn., 47, 32353251, doi:10.1007/s00382-016-3023-9.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., , Q. H. Wen, , Y. Xu, , L. C. Song, , and X. Zhang, 2014: Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J. Climate, 27, 65916611, doi:10.1175/JCLI-D-13-00761.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, T. J., , and R. C. Yu, 2006: Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J. Climate, 19, 58435858, doi:10.1175/JCLI3952.1.

    • Search Google Scholar
    • Export Citation
  • Zou, L. W., , and T. J. Zhou, 2016: Future summer precipitation changes over CORDEX‐East Asia domain downscaled by a regional ocean–atmosphere coupled model: A comparison to the stand‐alone RCM. J. Geophys. Res., 121, 26912704, doi:10.1002/2015JD024519.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 199 199 38
PDF Downloads 88 88 7

Extreme Precipitation Indices over China in CMIP5 Models. Part II: Probabilistic Projection

View More View Less
  • 1 Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing, China
  • | 2 Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing, China
  • | 3 College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
  • | 4 Laboratoire de Météorologie Dynamique, CNRS, Sorbonne Universités, UPMC Université Paris 06, Paris, France
© Get Permissions
Restricted access

Abstract

The present article is the second part of a study on the extreme precipitation indices over China in CMIP5 models that perform a probabilistic projection of future precipitation indices with reference to the period 1986–2005. This is realized with a rank-based weighting method. The ranking of the 25 models is done according to their performance in simulating rainfall indices in present-day climate. Such weights are used to form a weighted ensemble for future climate projection. Results show that, compared to the unweighted raw ensemble, the projection with the weighted scheme is more credible, as the signal-to-noise ratio (SNR) of indices is larger from the weighted ensemble. From the beginning of the mid-twenty-first century, changes of wet indices with probability >0.5 increase significantly, especially over western China and the Yellow–Huai River basin, where the changes of all wet indices are in excess of 10%, the increase of total precipitation (PRCPTOT) can reach up to 20% over western China at the end of twenty-first century, and the SNR of PRCPTOT and precipitation intensity (SDII) is the highest at those two regions. This indicates that the precipitation in those regions has a high reliability to become more extreme. The maximum consecutive dry days (CDD) decreases throughout the north of 30°N, which shows that drought conditions in northern China would be reduced, and they are more likely to increase in southern China. However, the SNR for projection of CDD is less than 1.0 almost everywhere. Such a situation seems related to a strengthening of the East Asian summer monsoon and the associated northward shift of the monsoon front.

Corresponding author address: Zhihong Jiang, Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, 219 Ningliu Rd., Nanjing 210044, China. E-mail: zhjiang@nuist.edu.cn

Abstract

The present article is the second part of a study on the extreme precipitation indices over China in CMIP5 models that perform a probabilistic projection of future precipitation indices with reference to the period 1986–2005. This is realized with a rank-based weighting method. The ranking of the 25 models is done according to their performance in simulating rainfall indices in present-day climate. Such weights are used to form a weighted ensemble for future climate projection. Results show that, compared to the unweighted raw ensemble, the projection with the weighted scheme is more credible, as the signal-to-noise ratio (SNR) of indices is larger from the weighted ensemble. From the beginning of the mid-twenty-first century, changes of wet indices with probability >0.5 increase significantly, especially over western China and the Yellow–Huai River basin, where the changes of all wet indices are in excess of 10%, the increase of total precipitation (PRCPTOT) can reach up to 20% over western China at the end of twenty-first century, and the SNR of PRCPTOT and precipitation intensity (SDII) is the highest at those two regions. This indicates that the precipitation in those regions has a high reliability to become more extreme. The maximum consecutive dry days (CDD) decreases throughout the north of 30°N, which shows that drought conditions in northern China would be reduced, and they are more likely to increase in southern China. However, the SNR for projection of CDD is less than 1.0 almost everywhere. Such a situation seems related to a strengthening of the East Asian summer monsoon and the associated northward shift of the monsoon front.

Corresponding author address: Zhihong Jiang, Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, 219 Ningliu Rd., Nanjing 210044, China. E-mail: zhjiang@nuist.edu.cn
Save