• Aldrian, E., , L. D. Gates, , and F. H. Widodo, 2007: Seasonal variability of Indonesian rainfall in ECHAM4 simulations and in the reanalyses: The role of ENSO. Theor. Appl. Climatol., 87, 4159, doi:10.1007/s00704-006-0218-8.

    • Search Google Scholar
    • Export Citation
  • Argueso, D., , A. D. Luca, , and J. P. Evans, 2016: Precipitation over urban areas in the western Maritime Continent using a convection-permitting model. Climate Dyn., 47, 11431159, doi:10.1007/s00382-015-2893-6.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., , Z. Wang, , J. Ju, , and T. Li, 2004: On the relationship between western Maritime Continent monsoon rainfall and ENSO during northern winter. J. Climate, 17, 665672, doi:10.1175/1520-0442(2004)017<0665:OTRBWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., , P. A. Harr, , and H.-J. Chen, 2005a: Synoptic disturbances over the equatorial South China Sea and western Maritime Continent during boreal winter. Mon. Wea. Rev., 133, 489503, doi:10.1175/MWR-2868.1.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., , Z. Wang, , J. McBride, , and C. Liu, 2005b: Annual cycle of Southeast Asia–Maritime Continent rainfall and the asymmetric monsoon transition. J. Climate, 18, 287301, doi:10.1175/JCLI-3257.1.

    • Search Google Scholar
    • Export Citation
  • Gianotti, R. L., , and E. A. B. Eltahir, 2014a: Regional climate modeling over the Maritime Continent. Part I: New parameterization for convective cloud fraction. J. Climate, 27, 14881503, doi:10.1175/JCLI-D-13-00127.1.

    • Search Google Scholar
    • Export Citation
  • Gianotti, R. L., , and E. A. B. Eltahir, 2014b: Regional climate modeling over the Maritime Continent. Part II: New parameterization for autoconversion of convective rainfall. J. Climate, 27, 15041523, doi:10.1175/JCLI-D-13-00171.1.

    • Search Google Scholar
    • Export Citation
  • Gomyo, M., , and K. Koichiro, 2009: Spatial and temporal variations in rainfall and the ENSO–rainfall relationship over Sarawak, Malaysian Borneo. SOLA, 5, 4144, doi:10.2151/sola.2009-011.

    • Search Google Scholar
    • Export Citation
  • Hamada, J.-I., , M. D. Yamanaka, , J. Matsumoto, , S. Fukao, , P. A. Winarso, , and T. Sribimawati, 2002: Spatial and temporal variations of the rainy season over Indonesia and their link to ENSO. J. Meteor. Soc. Japan, 80, 285310, doi:10.2151/jmsj.80.285.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 1987: Predictability of Java monsoon rainfall anomalies: A case study. J. Climate Appl. Meteor., 26, 133141, doi:10.1175/1520-0450(1987)026<0133:POJMRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haylock, M., , and J. McBride, 2001: Spatial coherence and predictability of Indonesian wet season rainfall. J. Climate, 14, 38823887, doi:10.1175/1520-0442(2001)014<3882:SCAPOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., 2003: Indonesian rainfall variability: Impacts of ENSO and local air–sea interaction. J. Climate, 16, 17751790, doi:10.1175/1520-0442(2003)016<1775:IRVIOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., , S. Yang, , Y. Li, , A. Kumar, , W. Wang, , and Z. Gao, 2013: Dynamical prediction of the East Asian winter monsoon by the NCEP Climate Forecast System. J. Geophys. Res. Atmos., 118, 13121328, doi:10.1002/jgrd.50193.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., , Y. Li, , S. Yang, , J. Shu, , and G. He, 2015: Interannual variation of mid-summer heavy rainfall in the eastern edge of the Tibetan Plateau. Climate Dyn., 45, 30913102, doi:10.1007/s00382-015-2526-0.

    • Search Google Scholar
    • Export Citation
  • Jo, S., , and J.-B. Ahn, 2015: Improvement of CGCM prediction for wet season precipitation over Maritime Continent using a bias correction method. Int. J. Climatol., 35, 37213732, doi:10.1002/joc.4232.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., , W. Ebisuzaki, , J. Woollen, , S.-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , and H. F. Diaz, 1989: Global climatic anomalies associated with extremes in the Southern Oscillation. J. Climate, 2, 10691090, doi:10.1175/1520-0442(1989)002<1069:GCAAWE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., , P. J. Webster, , V. E. Toma, , and D. Kim, 2014: Predictability and prediction skill of the MJO in two operational forecasting systems. J. Climate, 27, 53645378, doi:10.1175/JCLI-D-13-00480.1.

    • Search Google Scholar
    • Export Citation
  • Kirono, D. G. C., , N. J. Tapper, , and J. L. McBride, 1999: Documenting Indonesian rainfall in the 1997/1998 El Niño event. Phys. Geogr., 20, 422435.

    • Search Google Scholar
    • Export Citation
  • Kubota, H., , R. Shirooka, , and J.-I. Hamada, 2011: Interannual rainfall variability over the eastern Maritime Continent. J. Meteor. Soc. Japan, 89A, 111122, doi:10.2151/jmsj.2011-A07.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., , M. Chen, , and W. Wang, 2013: Understanding prediction skill of seasonal mean precipitation over the tropics. J. Climate, 26, 56745681, doi:10.1175/JCLI-D-12-00731.1.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , C.-P. Chang, , and P. H. Chan, 1983: Short-term planetary-scale interactions over the tropics and midlatitudes. Part II: Winter MONEX period. Mon. Wea. Rev., 111, 13721388, doi:10.1175/1520-0493(1983)111<1372:STPSIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., , M. R. Haylock, , and N. Nicholls, 2003: Relationships between the Maritime Continent heat source and the El Niño–Southern Oscillation phenomenon. J. Climate, 16, 29052914, doi:10.1175/1520-0442(2003)016<2905:RBTMCH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murakami, T., , and A. Sumi, 1982: Southern Hemisphere monsoon circulation during the 1978–79 WMONEX. Part I: Monthly mean wind fields. J. Meteor. Soc. Japan, 60, 638648.

    • Search Google Scholar
    • Export Citation
  • Neale, R., , and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16, 834848, doi:10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 1979: A simple air–sea interaction model. Quart. J. Roy. Meteor. Soc., 105, 93105, doi:10.1002/qj.49710544307.

  • Nicholls, N., 1981: Air–sea interaction and the possibility of long range weather prediction in the Indonesian Archipelago. Mon. Wea. Rev., 109, 24352443, doi:10.1175/1520-0493(1981)109<2435:ASIATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 1984: The Southern Oscillation and Indonesian sea surface temperature. Mon. Wea. Rev., 112, 424432, doi:10.1175/1520-0493(1984)112<0424:TSOAIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qian, J.-H., 2008: Why precipitation is mostly concentrated over islands in the Maritime Continent. J. Atmos. Sci., 65, 14281441, doi:10.1175/2007JAS2422.1.

    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1968: Role of a tropical “Maritime Continent” in the atmospheric circulation. Mon. Wea. Rev., 96, 365369, doi:10.1175/1520-0493(1968)096<0365:ROATMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., , T. M. Smith, , C. Liu, , D. B. Chelton, , K. S. Casey, , and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 2001: Teleconnections between the tropical Pacific and the Sahel. Quart. J. Roy. Meteor. Soc., 127, 16831706, doi:10.1002/qj.49712757512.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and et al. , 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Schiemann, R., , M.-E. Demory, , M. S. Mizielinski, , M. J. Roberts, , L. C. Shaffrey, , J. Strachan, , and P. L. Vidale, 2014: The sensitivity of the tropical circulation and Maritime Continent precipitation to climate model resolution. Climate Dyn., 42, 24552468, doi:10.1007/s00382-013-1997-0.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., , W. Wang, , J. Gottschalck, , Q. Zhang, , J.-K. E. Schemm, , W. R. Higgins, , and A. Kummar, 2009: Evaluation of MJO forecast skill from several statistical and dynamical forecast models. J. Climate, 22, 23722388, doi:10.1175/2008JCLI2421.1.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., , D. P. Rowell, , K. R. Sperber, , and F. Nortley, 1999: On the predictability of the interannual behaviour of the Madden–Julian oscillation and its relationship with El Niño. Quart. J. Roy. Meteor. Soc., 125, 583609, doi:10.1002/qj.49712555411.

    • Search Google Scholar
    • Export Citation
  • Sun, J., , H. Wang, , and W. Yuan, 2009: A possible mechanism for the co-variability of the boreal spring Antarctic Oscillation and the Yangtze River valley summer rainfall. Int. J. Climatol., 29, 12761284, doi:10.1002/joc.1773.

    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., , W. Wang, , M. Chen, , and A. Kumar, 2011: Representation of MJO variability in the NCEP Climate Forecast System. J. Climate, 24, 46764694, doi:10.1175/2011JCLI4188.1.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., , S. Yang, , X. Jiang, , and P. Zhao, 2016: Seasonal–interannual variation and prediction of wet and dry season rainfall over the Maritime Continent: Roles of ENSO and monsoon circulation. J. Climate, 29, 36753695, doi:10.1175/JCLI-D-15-0222.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., , and J. Shukla, 2013: The role of air–sea coupling in seasonal prediction of Asia–Pacific summer monsoon rainfall. J. Climate, 26, 56895697, doi:10.1175/JCLI-D-13-00190.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., , and J. Shukla, 2016: Estimation of weather noise in coupled ocean–atmosphere systems using initialized simulations. J. Climate, 29, 56755688, doi:10.1175/JCLI-D-15-0737.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 30 30 5
PDF Downloads 23 23 4

Roles of Remote and Local Forcings in the Variation and Prediction of Regional Maritime Continent Rainfall in Wet and Dry Seasons

View More View Less
  • 1 Department of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
  • | 2 Department of Atmospheric Sciences, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, and Institute of Earth Climate and Environment System, Sun Yat-sen University, Guangzhou, Guangdong, China
  • | 3 Institute of Plateau Meteorology, China Meteorological Administration, Chengdu, Sichuan, China
  • | 4 Center for Ocean–Land–Atmosphere Studies, and Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, Virginia
© Get Permissions
Restricted access

Abstract

Seasonal prediction of extratropical climate (e.g., the East Asian climate) is partly dependent upon the prediction skill for rainfall over the Maritime Continent (MC). A previous study by the authors found that the NCEP Climate Forecast System, version 2 (CFSv2), had difference in skill between predicting rainfall over the western MC (WMC) and the eastern MC (EMC), especially in the wet season. In this study, the potential mechanisms for this phenomenon are examined. It is shown that observationally in the wet season (from boreal winter to early spring) the EMC rainfall is closely linked to both ENSO and local sea surface temperature (SST) anomalies, whereas the WMC rainfall is only moderately correlated with ENSO. The model hindcast unrealistically predicts the relationship of the WMC rainfall with local SST and ENSO (even opposite to the observed feature), which contributes to lower prediction skill for the WMC rainfall. In the dry season (from boreal late summer to fall), the rainfall over the entire MC is significantly influenced by both ENSO and local SST in observations and this feature is well captured by the CFSv2. Therefore, the hindcasts do not show apparently different skill in rainfall prediction for EMC and WMC in the dry season. The possible roles of atmospheric internal processes are also discussed.

Denotes Open Access content.

Corresponding author address: Prof. Song Yang, Dept. of Atmospheric Sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou 510275, China. E-mail: yangsong3@mail.sysu.edu.cn

Abstract

Seasonal prediction of extratropical climate (e.g., the East Asian climate) is partly dependent upon the prediction skill for rainfall over the Maritime Continent (MC). A previous study by the authors found that the NCEP Climate Forecast System, version 2 (CFSv2), had difference in skill between predicting rainfall over the western MC (WMC) and the eastern MC (EMC), especially in the wet season. In this study, the potential mechanisms for this phenomenon are examined. It is shown that observationally in the wet season (from boreal winter to early spring) the EMC rainfall is closely linked to both ENSO and local sea surface temperature (SST) anomalies, whereas the WMC rainfall is only moderately correlated with ENSO. The model hindcast unrealistically predicts the relationship of the WMC rainfall with local SST and ENSO (even opposite to the observed feature), which contributes to lower prediction skill for the WMC rainfall. In the dry season (from boreal late summer to fall), the rainfall over the entire MC is significantly influenced by both ENSO and local SST in observations and this feature is well captured by the CFSv2. Therefore, the hindcasts do not show apparently different skill in rainfall prediction for EMC and WMC in the dry season. The possible roles of atmospheric internal processes are also discussed.

Denotes Open Access content.

Corresponding author address: Prof. Song Yang, Dept. of Atmospheric Sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou 510275, China. E-mail: yangsong3@mail.sysu.edu.cn
Save