• Arora, V. K., and et al. , 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi:10.1029/2010GL046270.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., , S. K. Behera, , S. A. Rao, , H. Weng, , and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., , K. Mogensen, , and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, doi:10.1002/qj.2063.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., , and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477493, doi:10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., , and G. J. Marshall, 2012: The reliability of Antarctic tropospheric pressure and temperature in the latest global reanalyses. J. Climate, 25, 71387146, doi:10.1175/JCLI-D-11-00685.1.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., , E. Shuckburgh, , J.-B. Sallee, , Z. Wang, , A. J. S. Meijers, , N. Bruneau, , T. Phillips, , and L. J. Wilcox, 2013: Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: Historical bias, forcing response, and state dependence. J. Geophys. Res. Atmos., 118, 547562, doi:10.1002/jgrd.50153.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., , J. P. Nicolas, , and A. J. Monaghan, 2011: An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J. Climate, 24, 41894209, doi:10.1175/2011JCLI4074.1.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., , and C. L. Parkinson, 2008: Antarctic sea ice variability and trends, 1979–2006. J. Geophys. Res., 113, C07004, doi:10.1029/2007JC004564.

    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., and et al. , 2015a: Skilful multi-year predictions of tropical trans-basin climate variability. Nat. Commun., 6, 6869, doi:10.1038/ncomms7869.

    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., , A. Timmermann, , S. Stevenson, , P. DiNezio, , and S. Langford, 2015b: Decadal predictability of soil water, vegetation, and wildfire frequency over North America. Climate Dyn., 45, 22132235, doi:10.1007/s00382-015-2469-5.

    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., , and D. W. J. Thompson, 2008: Observations of large-scale ocean–atmosphere interaction in the Southern Hemisphere. J. Climate, 21, 12441259, doi:10.1175/2007JCLI1809.1.

    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., , and M. H. England, 2011: Observed ENSO teleconnections to Southern Ocean SST anomalies diagnosed from a surface mixed layer heat budget. Geophys. Res. Lett., 38, L09701, doi:10.1029/2011GL046895.

    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., , G. R. Simpkins, , and M. H. England, 2015: Teleconnections between tropical Pacific SST anomalies and extratropical Southern Hemisphere climate. J. Climate, 28, 5665, doi:10.1175/JCLI-D-14-00438.1.

    • Search Google Scholar
    • Export Citation
  • Clem, K. R., , and R. L. Fogt, 2015: South Pacific circulation changes and their connection to the tropics and regional Antarctic warming in austral spring, 1979–2012. J. Geophys. Res. Atmos., 120, 27732792, doi:10.1002/2014JD022940.

    • Search Google Scholar
    • Export Citation
  • Clem, K. R., , and J. A. Renwick, 2015: Austral spring Southern Hemisphere circulation and temperature changes and links to the SPCZ. J. Climate, 28, 73717384, doi:10.1175/JCLI-D-15-0125.1.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., , and F. Nishio, 2008: Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res., 113, C02S07, doi:10.1029/2007JC004257.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., , and E. J. Steig, 2013: Temperature change on the Antarctic Peninsula linked to the tropical Pacific. J. Climate, 26, 75707585, doi:10.1175/JCLI-D-12-00729.1.

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., , W. N. Meier, , and J. R. Norris, 2014: A spurious jump in the satellite record: Has Antarctic sea ice expansion been overestimated? Cryosphere, 8, 12891296, doi:10.5194/tc-8-1289-2014.

    • Search Google Scholar
    • Export Citation
  • Fan, T., , C. Deser, , and D. P. Schneider, 2014: Recent Antarctic sea ice trends in the context of Southern Ocean surface climate variations since 1950. Geophys. Res. Lett., 41, 24192426, doi:10.1002/2014GL059239.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., , and D. H. Bromwich, 2006: Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the southern annular mode. J. Climate, 19, 979997, doi:10.1175/JCLI3671.1.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., and et al. , 2016: Making sense of the early-2000s warming slowdown. Nat. Climate Change, 6, 224228, doi:10.1038/nclimate2938.

    • Search Google Scholar
    • Export Citation
  • Gagné, M.-È., , N. P. Gillett, , and J. C. Fyfe, 2015: Observed and simulated changes in Antarctic sea ice extent over the past 50 years. Geophys. Res. Lett., 42, 9095, doi:10.1002/2014GL062231.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., , and V. Zunz, 2014: Decadal trends in the Antarctic sea ice extent ultimately controlled by ice–ocean feedback. Cryosphere, 8, 453470, doi:10.5194/tc-8-453-2014.

    • Search Google Scholar
    • Export Citation
  • Henley, B. J., , J. Gergis, , D. J. Karoly, , S. Power, , J. Kennedy, , and C. K. Folland, 2015: A tripole index for the interdecadal Pacific oscillation. Climate Dyn., 45, 30773090, doi:10.1007/s00382-015-2525-1.

    • Search Google Scholar
    • Export Citation
  • Hobbs, W. R., , N. L. Bindoff, , and M. N. Raphael, 2015: New perspectives on observed and simulated Antarctic sea ice extent trends using optimal fingerprinting techniques. J. Climate, 28, 15431560, doi:10.1175/JCLI-D-14-00367.1.

    • Search Google Scholar
    • Export Citation
  • Holland, P. R., , and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci., 5, 872875, doi:10.1038/ngeo1627.

  • Hoskins, B. J., , and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Irving, D., , and I. Simmonds, 2016: A new method for identifying the Pacific–South American pattern and its influence on regional climate variability. J. Climate, 29, 61096125, doi:10.1175/JCLI-D-15-0843.1.

    • Search Google Scholar
    • Export Citation
  • Jin, D., , and B. P. Kirtman, 2009: Why the Southern Hemisphere ENSO responses lead ENSO. J. Geophys. Res., 114, D23101, doi:10.1029/2009JD012657.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., , and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, doi:10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Lee, T., , and M. J. McPhaden, 2008: Decadal phase change in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century. Geophys. Res. Lett., 35, L01605, doi:10.1029/2007GL032419.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., , and D. W. J. Thompson, 2006: Observed relationships between the El-Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276287, doi:10.1175/JCLI3617.1.

    • Search Google Scholar
    • Export Citation
  • Li, X., , D. M. Holland, , E. P. Gerber, , and C. Yoo, 2014: Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature, 505, 538542, doi:10.1038/nature12945.

    • Search Google Scholar
    • Export Citation
  • Li, X., , E. P. Gerber, , D. M. Holland, , and C. Yoo, 2015a: A Rossby wave bridge from the tropical Atlantic to West Antarctica. J. Climate, 28, 22562273, doi:10.1175/JCLI-D-14-00450.1.

    • Search Google Scholar
    • Export Citation
  • Li, X., , D. M. Holland, , E. P. Gerber, , and C. Yoo, 2015b: Rossby waves mediate impacts of tropical oceans on West Antarctic atmospheric circulation in austral winter. J. Climate, 28, 81518164, doi:10.1175/JCLI-D-15-0113.1.

    • Search Google Scholar
    • Export Citation
  • Liu, J., , J. A. Curry, , and D. G. Martinson, 2004: Interpretation of recent Antarctic sea ice variability. Geophys. Res. Lett., 31, L02205, doi:10.1029/2003GL018732.

    • Search Google Scholar
    • Export Citation
  • Mahlstein, I., , P. R. Gent, , and S. Solomon, 2013: Historical Antarctic mean sea ice area, sea ice trends, and winds in CMIP5 simulations. J. Geophys. Res. Atmos., 118, 51055110, doi:10.1002/jgrd.50443.

    • Search Google Scholar
    • Export Citation
  • Matear, R. J., , T. J. O’Kane, , J. S. Risbey, , and M. Chamberlain, 2015: Sources of heterogeneous variability and trends in Antarctic sea-ice. Nat. Commun., 6, 8656, doi:10.1038/ncomms9656.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., , T. Lee, , and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett., 38, L15709, doi:10.1029/2011GL048275.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , H. Teng, , and J. M. Arblaster, 2014: Climate model simulations of the observed early-2000s hiatus of global warming. Nat. Climate Change, 4, 898902, doi:10.1038/nclimate2357.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , J. M. Arblaster, , C. M. Bitz, , C. T. Y. Chung, , and H. Teng, 2016a: Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat. Geosci., 9, 590595, doi:10.1038/ngeo2751.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , A. Hu, , and H. Teng, 2016b: Initialized decadal prediction for transition to positive phase of the interdecadal Pacific oscillation. Nat. Commun., 7, 11718, doi:10.1038/ncomms11718.

    • Search Google Scholar
    • Export Citation
  • Meier, W., , F. Fetterer, , M. Savoie, , S. Mallory, , R. Duerr, , and J. Stroeve, 2015: NOAA/NSIDC climate data record of passive microwave sea ice concentration, version 2. National Snow and Ice Data Center, Boulder, CO, digital media. [Available online at http://nsidc.org/data/G02202/versions/2.]

  • Mo, K. C., 2000: Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J. Climate, 13, 35993610, doi:10.1175/1520-0442(2000)013<3599:RBLFVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., , and R. W. Higgins, 1998: The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Wea. Rev., 126, 15811596, doi:10.1175/1520-0493(1998)126<1581:TPSAMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Newman, M., and et al. , 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, doi:10.1175/JCLI-D-15-0508.1.

  • Parkinson, C. L., , and D. J. Cavalieri, 2012: Antarctic sea ice variability and trends, 1979–2010. Cryosphere, 6, 871880, doi:10.5194/tc-6-871-2012.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., , and K. L. Smith, 2013: Can natural variability explain observed Antarctic sea ice trends? New modeling evidence from CMIP5. Geophys. Res. Lett., 40, 31953199, doi:10.1002/grl.50578.

    • Search Google Scholar
    • Export Citation
  • Purich, A., , T. Cowan, , S.-K. Min, , and W. Cai, 2013: Autumn precipitation trends over Southern Hemisphere midlatitudes as simulated by CMIP5 models. J. Climate, 26, 83418356, doi:10.1175/JCLI-D-13-00007.1.

    • Search Google Scholar
    • Export Citation
  • Purich, A., , W. Cai, , M. H. England, , and T. Cowan, 2016: Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes. Nat. Commun., 7, 10409, doi:10.1038/ncomms10409.

    • Search Google Scholar
    • Export Citation
  • Raphael, M. N., and et al. , 2016: The Amundsen Sea low: Variability, change, and impact on Antarctic climate. Bull. Amer. Meteor. Soc., 97, 111121, doi:10.1175/BAMS-D-14-00018.1.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., 2002: Southern Hemisphere circulation and relations with sea ice and sea surface temperature. J. Climate, 15, 30583068, doi:10.1175/1520-0442(2002)015<3058:SHCARW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., , J. C. Fyfe, , N. C. Swart, , W. G. Lee, , and M. H. England, 2016: Influence of tropical wind on global temperature from months to decades. Climate Dyn., 47, 21932203, doi:10.1007/s00382-015-2958-6.

    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., , C. Deser, , and Y. Okumura, 2012: An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Climate Dyn., 38, 323347, doi:10.1007/s00382-010-0985-x.

    • Search Google Scholar
    • Export Citation
  • Shields, C. A., , D. A. Bailey, , G. Danabasoglu, , M. Jochum, , J. T. Kiehl, , S. Levis, , and S. Park, 2012: The low-resolution CCSM4. J. Climate, 25, 39934014, doi:10.1175/JCLI-D-11-00260.1.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., , and J. C. Fyfe, 2016: Tropical Pacific impacts on cooling North American winters. Nat. Climate Change, 6, 970974, doi:10.1038/nclimate3069.

    • Search Google Scholar
    • Export Citation
  • Simpkins, G. R., , L. M. Ciasto, , D. W. J. Thompson, , and M. H. England, 2012: Seasonal relationships between large-scale climate variability and Antarctic sea ice concentration. J. Climate, 25, 54515469, doi:10.1175/JCLI-D-11-00367.1.

    • Search Google Scholar
    • Export Citation
  • Simpkins, G. R., , S. McGregor, , A. S. Taschetto, , L. M. Ciasto, , and M. H. England, 2014: Tropical connections to climatic change in the extratropical Southern Hemisphere: The role of Atlantic SST trends. J. Climate, 27, 49234936, doi:10.1175/JCLI-D-13-00615.1.

    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S. E., , D. G. Martinson, , R. C. Smith, , X. Yuan, , and D. Rind, 2008: Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and southern annular mode variability. J. Geophys. Res., 113, C03S90, doi:10.1029/2007JC004269.

    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S. E., , R. Massom, , D. Rind, , and D. Martinson, 2012: Regions of rapid sea ice change: An inter-hemispheric seasonal comparison. Geophys. Res. Lett., 39, L06501, doi:10.1029/2012GL050874.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., , and J. C. Fyfe, 2013: The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends. Geophys. Res. Lett., 40, 43284332, doi:10.1002/grl.50820.

    • Search Google Scholar
    • Export Citation
  • Turner, J., 2004: The El Niño–Southern Oscillation and Antarctica. Int. J. Climatol., 24, 131, doi:10.1002/joc.965.

  • Turner, J., and et al. , 2009: Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett., 36, L08502, doi:10.1029/2009GL037524.

    • Search Google Scholar
    • Export Citation
  • Turner, J., , T. J. Bracegirdle, , T. Phillips, , G. J. Marshall, , and J. S. Hosking, 2013: An initial assessment of Antarctic sea ice extent in the CMIP5 models. J. Climate, 26, 14731484, doi:10.1175/JCLI-D-12-00068.1.

    • Search Google Scholar
    • Export Citation
  • Turner, J., , J. S. Hosking, , G. J. Marshall, , T. Phillips, , and T. J. Bracegirdle, 2016: Antarctic sea ice increase consistent with intrinsic variability of the Amundsen Sea low. Climate Dyn., 46, 23912402, doi:10.1007/s00382-015-2708-9.

    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., , A. Sen Gupta, , and M. H. England, 2009: Causes of late twentieth-century trends in New Zealand precipitation. J. Climate, 22, 319, doi:10.1175/2008JCLI2323.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and et al. , 2011: Interpretation of recent trends in Antarctic sea ice concentration. J. Appl. Remote Sens., 5, 053557, doi:10.1117/1.3643691.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., , and D. G. Martinson, 2000: Antarctic sea ice extent variability and its global connectivity. J. Climate, 13, 16971717, doi:10.1175/1520-0442(2000)013<1697:ASIEVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zunz, V., , H. Goosse, , and F. Massonnet, 2013: How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent? Cryosphere, 7, 451468, doi:10.5194/tc-7-451-2013.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 223 223 38
PDF Downloads 172 172 21

Tropical Pacific SST Drivers of Recent Antarctic Sea Ice Trends

View More View Less
  • 1 CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia
  • | 2 Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
  • | 3 ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia
  • | 4 International Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • | 5 Department of Oceanography, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • | 6 Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, British Columbia, Canada
  • | 7 National Center for Atmospheric Research, Boulder, Colorado
  • | 8 School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia
© Get Permissions
Restricted access

Abstract

A strengthening of the Amundsen Sea low from 1979 to 2013 has been shown to largely explain the observed increase in Antarctic sea ice concentration in the eastern Ross Sea and decrease in the Bellingshausen Sea. Here it is shown that while these changes are not generally seen in freely running coupled climate model simulations, they are reproduced in simulations of two independent coupled climate models: one constrained by observed sea surface temperature anomalies in the tropical Pacific and the other by observed surface wind stress in the tropics. This analysis confirms previous results and strengthens the conclusion that the phase change in the interdecadal Pacific oscillation from positive to negative over 1979–2013 contributed to the observed strengthening of the Amundsen Sea low and the associated pattern of Antarctic sea ice change during this period. New support for this conclusion is provided by simulated trends in spatial patterns of sea ice concentrations that are similar to those observed. These results highlight the importance of accounting for teleconnections from low to high latitudes in both model simulations and observations of Antarctic sea ice variability and change.

This article is included in the Connecting the Tropics to the Polar Regions Special Collection.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0440.s1.

Corresponding author address: Ariaan Purich, CSIRO Oceans and Atmosphere, PMB 1, Aspendale VIC 3195, Australia. E-mail: ariaan.purich@csiro.au

Abstract

A strengthening of the Amundsen Sea low from 1979 to 2013 has been shown to largely explain the observed increase in Antarctic sea ice concentration in the eastern Ross Sea and decrease in the Bellingshausen Sea. Here it is shown that while these changes are not generally seen in freely running coupled climate model simulations, they are reproduced in simulations of two independent coupled climate models: one constrained by observed sea surface temperature anomalies in the tropical Pacific and the other by observed surface wind stress in the tropics. This analysis confirms previous results and strengthens the conclusion that the phase change in the interdecadal Pacific oscillation from positive to negative over 1979–2013 contributed to the observed strengthening of the Amundsen Sea low and the associated pattern of Antarctic sea ice change during this period. New support for this conclusion is provided by simulated trends in spatial patterns of sea ice concentrations that are similar to those observed. These results highlight the importance of accounting for teleconnections from low to high latitudes in both model simulations and observations of Antarctic sea ice variability and change.

This article is included in the Connecting the Tropics to the Polar Regions Special Collection.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-16-0440.s1.

Corresponding author address: Ariaan Purich, CSIRO Oceans and Atmosphere, PMB 1, Aspendale VIC 3195, Australia. E-mail: ariaan.purich@csiro.au

Supplementary Materials

    • Supplemental Materials (PDF 9.00 MB)
Save