• Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, doi:10.1038/nature01092.

    • Search Google Scholar
    • Export Citation
  • Ammann, C. M., G. A. Meehl, W. M. Washington, and C. S. Zender, 2003: A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate. Geophys. Res. Lett., 30, 1657, doi:10.1029/2003GL016875.

    • Search Google Scholar
    • Export Citation
  • Bao, Q., and Coauthors, 2013: The Flexible Global Ocean–Atmosphere–Land System Model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561576, doi:10.1007/s00376-012-2113-9.

    • Search Google Scholar
    • Export Citation
  • Bentsen, M., and Coauthors, 2012: The Norwegian Earth System Model, NorESM1-M—Part 1: Description and basic evaluation. Geosci. Model Dev., 6, 687720, doi:10.5194/gmd-6-687-2013.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. W. Dixon, T. L. Delworth, T. R. Knutson, R. J. Stouffer, and F. Zeng, 2003: Twentieth-century temperature and precipitation trends in ensemble climate simulations including natural and anthropogenic forcing. J. Geophys. Res., 108, 4798, doi:10.1029/2003JD003812.

    • Search Google Scholar
    • Export Citation
  • Chen, J., A. D. Del Genio, B. E. Carlson, and M. G. Bosilovich, 2008: The spatiotemporal structure of twentieth-century climate variations in observations and reanalyses. Part I: Long-term trend. J. Climate, 21, 26112633, doi:10.1175/2007JCLI2011.1.

    • Search Google Scholar
    • Export Citation
  • Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249266, doi:10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cirisan, A., P. Spichtinger, B. P. Luo, D. K. Weisenstein, H. Wernli, U. Lohmann, and T. Peter, 2013: Microphysical and radiative changes in cirrus clouds by geoengineering the stratosphere. J. Geophys. Res., 118, 45334548, doi:10.1002/jgrd.50388.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, doi:10.1175/2011JCLI3955.1.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, doi:10.1007/s00382-012-1636-1.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., and H. van den Dool, 2008: A global monthly land surface air temperature analysis for 1948–present. J. Geophys. Res., 113, D01103, doi:10.1029/2007JD008470.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Graf, H.-F., I. Kirchner, A. Robock, and I. Schult, 1993: Pinatubo eruption winter climate effects: Model versus observations. Climate Dyn., 9, 8193, doi:10.1007/BF00210011.

    • Search Google Scholar
    • Export Citation
  • Gu, G., and R. F. Adler, 2011: Precipitation and temperature variations on the interannual time scale: Assessing the impact of ENSO and volcanic eruptions. J. Climate, 24, 22582270, doi:10.1175/2010JCLI3727.1.

    • Search Google Scholar
    • Export Citation
  • Guo, S., G. J. S. Bluth, W. I. Rose, I. M. Watson, and A. J. Prata, 2004: Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors. Geochem. Geophys. Geosyst., 5, Q04001, doi:10.1029/2003GC000654.

    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, doi:10.1002/joc.3711.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, doi:10.1175/2008JCLI2292.1.

    • Search Google Scholar
    • Export Citation
  • Iles, C. E., and G. C. Hegerl, 2014: The global precipitation response to volcanic eruptions in the CMIP5 models. Environ. Res. Lett., 9, 104012, doi:10.1088/1748-9326/9/10/104012.

    • Search Google Scholar
    • Export Citation
  • Joseph, R., and N. Zeng, 2011: Seasonally modulated tropical drought induced by volcanic aerosol. J. Climate, 24, 20452060, doi:10.1175/2009JCLI3170.1.

    • Search Google Scholar
    • Export Citation
  • Koch, D., and Coauthors, 2011: Coupled aerosol-chemistry–climate twentieth-century transient model investigation: Trends in short-lived species and climate responses. J. Climate, 24, 26932714, doi:10.1175/2011JCLI3582.1.

    • Search Google Scholar
    • Export Citation
  • Krueger, A., N. Krotkov, and S. Carn, 2008: El Chichon: The genesis of volcanic sulfur dioxide monitoring from space. J. Volcanol. Geotherm. Res., 175, 408414, doi:10.1016/j.jvolgeores.2008.02.026.

    • Search Google Scholar
    • Export Citation
  • Kübbeler, M., U. Lohmann, and J. Feichter, 2012: Effects of stratospheric sulfate aerosol geo-engineering on cirrus clouds. Geophys. Res. Lett., 39, L23803, doi:10.1029/2012GL053797.

    • Search Google Scholar
    • Export Citation
  • Lean, J., 2009: Calculations of solar irradiance: monthly means from 1882 to 2008, annual means from 1610 to 2008. Accessed 21 August 2014. [Available online at http://www.geo.fu-berlin.de/en/met/ag/strat/forschung/SOLARIS/Input_data/Calculations_of_Solar_Irradiance.pdf.]

  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.]

  • Ramachandran, S., V. Ramaswamy, G. L. Stenchikov, and A. Robock, 2000: Radiative impact of the Mount Pinatubo volcanic eruption: Lower stratospheric response. J. Geophys. Res., 105, 24 40924 429, doi:10.1029/2000JD900355.

    • Search Google Scholar
    • Export Citation
  • Randel, D. L., T. J. Greenwald, T. H. Vonder Haar, G. L. Stephens, M. A. Ringerud, and C. L. Combs, 1996: A new global water vapor dataset. Bull. Amer. Meteor. Soc., 77, 12331246, doi:10.1175/1520-0477(1996)077<1233:ANGWVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Robock, A., and Y. Liu, 1994: The volcanic signal in Goddard Institute for Space Studies three-dimensional model simulations. J. Climate, 7, 4455, doi:10.1175/1520-0442(1994)007<0044:TVSIGI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robock, A., and J. Mao, 1995: The volcanic signal in surface temperature observations. J. Climate, 8, 10861103, doi:10.1175/1520-0442(1995)008<1086:TVSIST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robock, A., C. M. Ammann, L. Oman, D. Shindell, S. Levis, and G. Stenchikov, 2009: Did the Toba volcanic eruption of ~74 ka B.P. produce widespread glaciation? J. Geophys. Res., 114, D10107, doi:10.1029/2008JD011652.

    • Search Google Scholar
    • Export Citation
  • Sato, M., J. E. Hansen, M. P. McCormick, and J. B. Pollack, 1993: Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res., 98, 22 98722 994, doi:10.1029/93JD02553.

    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., C. M. Ammann, B. L. Otto-Bliesner, and D. S. Kaufman, 2009: Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model. J. Geophys. Res., 114, D15101, doi:10.1029/2008JD011222.

    • Search Google Scholar
    • Export Citation
  • Shindell, D., and Coauthors, 2013: Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations. Atmos. Chem. Phys., 13, 26532689, doi:10.5194/acp-13-2653-2013.

    • Search Google Scholar
    • Export Citation
  • Shindell, D., G. Faluvegi, N. Unger, E. Aguilar, G. A. Schmidt, D. M. Koch, S. E. Bauer, and J. R. Miller, 2006: Simulations of preindustrial, present-day, and 2100 conditions in the NASA GISS composition and climate model G-PUCCINI. Atmos. Chem. Phys., 6, 44274459, doi:10.5194/acp-6-4427-2006.

    • Search Google Scholar
    • Export Citation
  • Stenchikov, G. L., I. Kirchner, A. Robock, H.-F. Graf, J. C. Antua, R. G. Grainger, A. Lambert, and L. Thomason, 1998: Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. J. Geophys. Res., 103, 13 83713 857, doi:10.1029/98JD00693.

    • Search Google Scholar
    • Export Citation
  • Stenchikov, G. L., A. Robock, V. Ramaswamy, M. D. Schwarzkopf, K. Hamilton, and S. Ramachandran, 2002: Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion. J. Geophys. Res., 107, 4803, doi:10.1029/2002JD002090.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2013: Atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model. Earth Syst., 5, 146172, doi:10.1002/jame.20015.

    • Search Google Scholar
    • Export Citation
  • Takemura, T., T. Nozawa, S. Emori, T. Y. Nakajima, and T. Nakajima, 2005: Simulation of climate response to aerosol direct and indirect effects with aerosol transport–radiation model. J. Geophys. Res., 110, D02202, doi:10.1029/2004JD005029.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., D. Williamson, and F. Zwiers, 2000: The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. PCMDI Tech. Rep. 60, 25 pp.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thomason, L. W., and T. Peter, Eds., 2006: Assessment of stratospheric aerosol properties (ASAP). SPARC Rep. 4, WMO/TD Rep. 1295, 322 pp. [Available online at http://www.sparc-climate.org/publications/sparc-reports/sparc-report-no4/.]

  • Timmreck, C., H. Graf, D. Zanchettin, S. Hagemann, T. Kleinen, and K. Krüger, 2012: Climate response to the Toba super-eruption: Regional changes. Quat. Int., 258, 3044, doi:10.1016/j.quaint.2011.10.008.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and A. Dai, 2007: Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys. Res. Lett., 34, L15702, doi:10.1029/2007GL030524.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. M. Caron, D. P. Stepaniak, and S. Worley, 2002: Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res., 107, 4065, doi:10.1029/2000JD000298.

    • Search Google Scholar
    • Export Citation
  • von Salzen, K., and Coauthors, 2013: The Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4). Part I: Representation of physical processes. Atmos.–Ocean, 51, 104125, doi:10.1080/07055900.2012.755610.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., and A. Navarra, Eds., 1993: Analysis of Climate Variability, 342 pp.

  • Wang, X. L., and V. R. Swail, 2001: Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. J. Climate, 14, 22042221, doi:10.1175/1520-0442(2001)014<2204:COEWHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, doi:10.1175/2010JCLI3679.1.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and K. Matsuura, 1995: Smart interpolation of annually averaged air temperature in the United States. J. Appl. Meteor., 34, 25772586, doi:10.1175/1520-0450(1995)034<2577:SIOAAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, T., and Coauthors, 2010: The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day climate. Climate Dyn., 34, 123147, doi:10.1007/s00382-008-0487-2.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2011: Meteorological Research Institute Earth System Model version 1 (MRI-ESM1): Model description. Meteorological Research Institute Tech. Rep. 64, 83 pp. [Available online at http://www.mri-jma.go.jp/Publish/Technical/DATA/VOL_64/tec_rep_mri_64.pdf.]

  • Zhao, M., I. Held, S.-J. Lin, and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, doi:10.1175/2009JCLI3049.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 144 61 5
PDF Downloads 94 35 1

Tropical Temperature and Precipitation Responses to Large Volcanic Eruptions: Observations and AMIP5 Simulations

A. MeyerETH Zürich, Zurich, Switzerland

Search for other papers by A. Meyer in
Current site
Google Scholar
PubMed
Close
,
D. FoliniETH Zürich, Zurich, Switzerland

Search for other papers by D. Folini in
Current site
Google Scholar
PubMed
Close
,
U. LohmannETH Zürich, Zurich, Switzerland

Search for other papers by U. Lohmann in
Current site
Google Scholar
PubMed
Close
, and
T. PeterETH Zürich, Zurich, Switzerland

Search for other papers by T. Peter in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical land mean surface air temperature and precipitation responses to the eruptions of El Chichón in 1982 and Pinatubo in 1991, as simulated by the atmosphere-only GCMs (AMIP) in phase 5 of the Coupled Model Intercomparison Project (CMIP5), are examined and compared to three observational datasets. The El Niño–Southern Oscillation (ENSO) signal was statistically separated from the volcanic signal in all time series. Focusing on the ENSO signal, it was found that the 17 investigated AMIP models successfully simulate the observed 4-month delay in the temperature responses to the ENSO phase but simulate somewhat too-fast precipitation responses during the El Niño onset stage. The observed correlation between temperature and ENSO phase (correlation coefficient of 0.75) is generally captured well by the models (simulated correlation of 0.71 and ensemble means of 0.61–0.83). For precipitation, mean correlations with the ENSO phase are −0.59 for observations and −0.53 for the models, with individual ensemble members having correlations as low as −0.26. Observed, ENSO-removed tropical land temperature and precipitation decrease by about 0.35 K and 0.25 mm day−1 after the Pinatubo eruption, while no significant decrease in either variable was observed after El Chichón. The AMIP models generally capture this behavior despite a tendency to overestimate the precipitation response to El Chichón. Scatter is substantial, both across models and across ensemble members of individual models. Natural variability thus may still play a prominent role despite the strong volcanic forcing.

Corresponding author address: A. Meyer, ETH Zürich, Universitaetsstrasse 16, 8092 Zurich, Switzerland. E-mail: angela.meyer@env.ethz.ch

Abstract

Tropical land mean surface air temperature and precipitation responses to the eruptions of El Chichón in 1982 and Pinatubo in 1991, as simulated by the atmosphere-only GCMs (AMIP) in phase 5 of the Coupled Model Intercomparison Project (CMIP5), are examined and compared to three observational datasets. The El Niño–Southern Oscillation (ENSO) signal was statistically separated from the volcanic signal in all time series. Focusing on the ENSO signal, it was found that the 17 investigated AMIP models successfully simulate the observed 4-month delay in the temperature responses to the ENSO phase but simulate somewhat too-fast precipitation responses during the El Niño onset stage. The observed correlation between temperature and ENSO phase (correlation coefficient of 0.75) is generally captured well by the models (simulated correlation of 0.71 and ensemble means of 0.61–0.83). For precipitation, mean correlations with the ENSO phase are −0.59 for observations and −0.53 for the models, with individual ensemble members having correlations as low as −0.26. Observed, ENSO-removed tropical land temperature and precipitation decrease by about 0.35 K and 0.25 mm day−1 after the Pinatubo eruption, while no significant decrease in either variable was observed after El Chichón. The AMIP models generally capture this behavior despite a tendency to overestimate the precipitation response to El Chichón. Scatter is substantial, both across models and across ensemble members of individual models. Natural variability thus may still play a prominent role despite the strong volcanic forcing.

Corresponding author address: A. Meyer, ETH Zürich, Universitaetsstrasse 16, 8092 Zurich, Switzerland. E-mail: angela.meyer@env.ethz.ch
Save