• Abish, B., , and K. Mohanakumar, 2013: Absorbing aerosol variability over the Indian subcontinent and its increasing dependence on ENSO. Global Planet. Change, 106, 1319, doi:10.1016/j.gloplacha.2013.02.007.

    • Search Google Scholar
    • Export Citation
  • Ackerman, S. A., , and S. K. Cox, 1989: Surface weather observations of atmospheric dust over the southwest summer monsoon region. Meteor. Atmos. Phys., 41, 1934, doi:10.1007/BF01032587.

    • Search Google Scholar
    • Export Citation
  • Awad, A. M., , and A.-W. S. Mashat, 2013: Synoptic features associated with dust transition processes from North Africa to Asia. Arab. J. Geosci., 7, 24512467, doi:10.1007/s12517-013-0923-4.

    • Search Google Scholar
    • Export Citation
  • Bajgiran, P. R., , A. A. Darvishsefat, , A. Khalili, , and M. F. Makhdoum, 2008: Using AVHRR-based vegetation indices for drought monitoring in the northwest of Iran. J. Arid Environ., 72, 10861096, doi:10.1016/j.jaridenv.2007.12.004.

    • Search Google Scholar
    • Export Citation
  • Banerjee, P., , and S. Prasanna Kumar, 2014: Dust-induced episodic phytoplankton blooms in the Arabian Sea during winter monsoon. J. Geophys. Res. Oceans, 119, 71237138, doi:10.1002/2014JC010304.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., , H. Cullen, , and B. Lyon, 2002: Drought in central and southwest Asia: La Niña, the warm pool, and Indian Ocean precipitation. J. Climate, 15, 697700, doi:10.1175/1520-0442(2002)015<0697:DICASA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., , A. Hoell, , and F. Colby, 2007: Examining the wintertime response to tropical convection over the Indian Ocean by modifying convective heating in a full atmospheric model. Geophys. Res. Lett., 34, L19702, doi:10.1029/2007GL030043.

    • Search Google Scholar
    • Export Citation
  • Deepshikha, S., , S. K. Satheesh, , and J. Srinivasan, 2006: Dust aerosols over India and adjacent continents retrieved using METEOSAT infrared radiance. Part I: Sources and regional distribution. Ann. Geophys., 24, 3761, doi:10.5194/angeo-24-37-2006.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., , and H. van den Dool, 2004: Climate Prediction Center global monthly soil moisture data set at 0.5° resolution for 1948 to present. J. Geophys. Res., 109, D10102, doi:10.1029/2003JD004345.

    • Search Google Scholar
    • Export Citation
  • Fecan, F., , B. Marticorena, , and G. Bergametti, 1999: Parameterization of the increase of the Aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid area. Ann. Geophys., 17, 149157, doi:10.1007/s00585-999-0149-7.

    • Search Google Scholar
    • Export Citation
  • Findlater, J., 1969: A major low-level air current near the Indian Ocean during the northern summer. Quart. J. Roy. Meteor. Soc., 95, 362380, doi:10.1002/qj.49709540409.

    • Search Google Scholar
    • Export Citation
  • Gautam, R., , Z. Liu, , R. P. Singh, , and N. C. Hsu, 2009: Two contrasting dust-dominant periods over India observed from MODIS and CALIPSO data. Geophys. Res. Lett., 36, L06813, doi:10.1029/2008GL036967.

    • Search Google Scholar
    • Export Citation
  • Ginoux, P., , J. M. Prospero, , T. E. Gill, , N. C. Hsu, , and M. Zhao, 2012: Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys., 50, RG3005, doi:10.1029/2012RG000388.

    • Search Google Scholar
    • Export Citation
  • Goudie, A. S., , and N. J. Middleton, 2006: Desert Dust in the Global System. Springer, 287 pp.

  • Herman, J. R., , and E. A. Celarier, 1997: Earth surface reflectivity climatology at 340–380 nm from TOMS data. J. Geophys. Res., 102, 28 00328 011, doi:10.1029/97JD02074.

    • Search Google Scholar
    • Export Citation
  • Herman, J. R., , P. B. Bhartia, , O. Torres, , C. Hsu, , C. J. Seftor, , and E. Celarier, 1997: Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data. J. Geophys. Res., 102, 16 91116 921, doi:10.1029/96JD03680.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., , C. Funk, , and M. Barlow, 2014: La Niña diversity and northwest Indian Ocean rim teleconnections. Climate Dyn., 43, 27072724, doi:10.1007/s00382-014-2083-y.

    • Search Google Scholar
    • Export Citation
  • Huneeus, N., and Coauthors, 2011: Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys., 11, 77817816, doi:10.5194/acp-11-7781-2011.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

  • Izumo, T., , C. de Boyer Montegut, , J.-J. Luo, , S. K. Behera, , S. Masson, , and T. Yamagata, 2008: The role of the western Arabian Sea upwelling in Indian monsoon variability. J. Climate, 21, 56035623, doi:10.1175/2008JCLI2158.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaskaoutis, D. G., , A. Rashki, , E. E. Houssos, , A. Mofidi, , D. Goto, , A. Bartzokas, , P. Francois, , and M. Legrand, 2014: Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran. Climate Dyn., 45, 407424, doi:10.1007/s00382-014-2208-3.

    • Search Google Scholar
    • Export Citation
  • Kim, M.-K., , W. K. M. Lau, , K.-M. Kim, , J. Sang, , Y.-H. Kim, , and W.-S. Lee, 2016: Amplification of ENSO effects on Indian summer monsoon by absorbing aerosols. Climate Dyn., doi:10.1007/s00382-015-2722-y, in press.

    • Search Google Scholar
    • Export Citation
  • Kiss, P., , I. M. Jánosi, , and O. Torres, 2007: Early calibration problems detected in TOMS Earth-Probe aerosol signal. Geophys. Res. Lett., 34, L07803, doi:10.1029/2006GL028108.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , B. J. Soden, , and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, doi:10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kubilay, N., , S. Nickovic, , C. Moulin, , and F. Dulac, 2000: An illustration of the transport and deposition of mineral dust onto the eastern Mediterranean. Atmos. Environ., 34, 12931303, doi:10.1016/S1352-2310(99)00179-X.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., , and M. P. Hoerling, 2003: The nature and causes for the delayed atmospheric response to El Niño. J. Climate, 16, 13911403, doi:10.1175/1520-0442-16.9.1391.

    • Search Google Scholar
    • Export Citation
  • Kumar, K., , B. Rajagopalan, , M. Hoerling, , G. Bates, , and M. Cane, 2006: Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314, 115119, doi:10.1126/science.1131152.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and K.-M. Kim, 2006: Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys. Res. Lett., 33, L21810, doi:10.1029/2006GL027546.

    • Search Google Scholar
    • Export Citation
  • Léon, J.-F., , and M. Legrand, 2003: Mineral dust sources in the surroundings of the north Indian Ocean. Geophys. Res. Lett., 30, 1309, doi:10.1029/2002GL016690.

    • Search Google Scholar
    • Export Citation
  • Li, F., , and V. Ramanathan, 2002: Winter to summer monsoon variation of aerosol optical depth over the tropical Indian Ocean. J. Geophys. Res., 107, 4284, doi:10.1029/2001JD000949.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Littmann, T., 1991: Dust storm frequency in Asia: Climatic control and variability. Int. J. Climatol., 11, 393412, doi:10.1002/joc.3370110405.

    • Search Google Scholar
    • Export Citation
  • Mariotti, A., 2007: How ENSO impacts precipitation in southwest central Asia. Geophys. Res. Lett., 34, L16706, doi:10.1029/2007GL030078.

    • Search Google Scholar
    • Export Citation
  • Mariotti, A., , J. Ballabrera-Poy, , and N. Zeng, 2005: Tropical influence on Euro-Asian autumn rainfall variability. Climate Dyn., 24, 511521, doi:10.1007/s00382-004-0498-6.

    • Search Google Scholar
    • Export Citation
  • Martyn, D., 1992: Climates of the World. Elsevier, 436 pp.

  • Menon, S., , J. Hansen, , L. Nazarenko, , and Y. Luo, 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 22502253, doi:10.1126/science.1075159.

    • Search Google Scholar
    • Export Citation
  • Meyers, G., , P. McIntosh, , L. Pigot, , and M. Pook, 2007: The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J. Climate, 20, 28722880, doi:10.1175/JCLI4152.1.

    • Search Google Scholar
    • Export Citation
  • Middleton, N. J., 1986: A geography of dust storms in south-west Asia. J. Climatol., 6, 183196, doi:10.1002/joc.3370060207.

  • Müller, D., , K. Franke, , F. Wagner, , D. Althausen, , A. Ansmann, , J. Heintzenberg, , and G. Verver, 2001: Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six-wavelength lidar: 2. Case studies. J. Geophys. Res., 106, 28 57728 595, doi:10.1029/2000JD900785.

    • Search Google Scholar
    • Export Citation
  • Nazemosadat, M. J., , and A. R. Ghasemi, 2004: Quantifying the ENSO-related shifts in the intensity and probability of drought and wet periods in Iran. J. Climate, 17, 40054018, doi:10.1175/1520-0442(2004)017<4005:QTESIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., , F. Alkolibi, , E. Fadda, , and F. Bakhrjy, 2013: Trajectory analysis of Saudi Arabian dust storms. J. Geophys. Res., 118, 60286043, doi:10.1002/jgrd.50346.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., , Y. Yu, , and O. V. Kalashnikova, 2015: Regime shift in Arabian dust activity, triggered by persistent Fertile Crescent drought. J. Geophys. Res. Atmos., 120, 10 22910 249, doi:10.1002/2015JD023855.

    • Search Google Scholar
    • Export Citation
  • Patra, P. K., , M. D. Kumar, , N. Mahowald, , and V. V. S. S. Sarma, 2007: Atmospheric deposition and surface stratification as controls of contrasting chlorophyll abundance in the north Indian Ocean. J. Geophys. Res., 112, C05029, doi:10.1029/2006JC003885.

    • Search Google Scholar
    • Export Citation
  • Pedelty, J., and Coauthors, 2007: Generating a long-term land data record from the AVHRR and MODIS instruments. Proc. IEEE Int. Geoscience and Remote Sensing Symp. 2007, Barcelona, Spain, Institute of Electrical and Electronics Engineers, 10211025.

  • Perrone, T. J., 1979: Winter shamal in the Persian Gulf. Naval Environmental Prediction Research Facility Tech. Rep. TR 79-06, 158 pp.

  • Prospero, J. M., , P. Ginoux, , O. Torres, , S. E. Nicholson, , and T. E. Gill, 2002: Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys., 40, 1002, doi:10.1029/2000RG000095.

    • Search Google Scholar
    • Export Citation
  • Rahul, P. R. C., , P. S. Salvekar, , and P. C. S. Devara, 2008: Aerosol optical depth variability over Arabian Sea during drought and normal years of Indian monsoon. Geophys. Res. Lett., 35, L22812, doi:10.1029/2008GL035573.

    • Search Google Scholar
    • Export Citation
  • Rao, P. G., , H. R. Hatwar, , M. H. Al Sulaiti, , and A. H. Al Mulla, 2003: Summer shamals over the Arabian Gulf. Weather, 58, 471478, doi:10.1002/wea.6080581207.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., , and B. J. Hoskins, 1996: Monsoons and the dynamics of deserts. Quart. J. Roy. Meteor. Soc., 122, 13851404, doi:10.1002/qj.49712253408.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., , and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., , B. N. Goswami, , P. N. Vinayachandran, , and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Satheesh, S. K., , J. Srinivasan, , and K. K. Moorthy, 2006: Contribution of sea-salt to aerosol optical depth over the Arabian Sea derived from MODIS observations. Geophys. Res. Lett., 33, L03809, doi:10.1029/2005GL024856.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., , A. Becker, , P. Finger, , A. Meyer-Christoffer, , M. Ziese, , and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, doi:10.1007/s00704-013-0860-x.

    • Search Google Scholar
    • Export Citation
  • Singh, R. P., , A. K. Prasad, , V. K. Kayetha, , and M. Kafatos, 2008: Enhancement of oceanic parameters associated with dust storms using satellite data. J. Geophys. Res., 113, C11008, doi:10.1029/2008JC004815.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Syed, F., , F. Giorgi, , J. Pal, , and M. King, 2006: Effect of remote forcings on the winter precipitation of central southwest Asia. Part 1: Observations. Theor. Appl. Climatol., 86, 147160, doi:10.1007/s00704-005-0217-1.

    • Search Google Scholar
    • Export Citation
  • Tindale, N. W., , and P. P. Pease, 1999: Aerosols over the Arabian Sea: Atmospheric transport pathways and concentrations of dust and sea salt. Deep-Sea Res. II, 46, 15771595, doi:10.1016/S0967-0645(99)00036-3.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., , and P. J. Webster, 1999: Interdecadal changes in the ENSO–monsoon system. J. Climate, 12, 26792690, doi:10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, doi:10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vinoj, V., , P. J. Rasch, , H. Wang, , J.-H. Yoon, , P.-L. Ma, , K. Landu, , and B. Singh, 2014: Short-term modulation of Indian summer monsoon rainfall by west Asian dust. Nat. Geosci., 7, 308313, doi:10.1038/ngeo2107.

    • Search Google Scholar
    • Export Citation
  • Vishkaee, A. F., , C. Flamant, , J. Cuesta, , L. Oolman, , P. Flamant, , and H. R. Khalesifard, 2012: Dust transport over Iraq and northwest Iran associated with winter shamal: A case study. J. Geophys. Res., 117, D03201, doi:10.1029/2011JD016339.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , H. Annamalai, , F. A. Schott, , and J. P. McCreary, 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878, doi:10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., , T. M. Smith, , and R. W. Reynolds, 2003: Interdecadal changes of 30-yr SST normals during 1871–2000. J. Climate, 16, 16011612.

    • Search Google Scholar
    • Export Citation
  • Yamagata, T., , S. K. Behera, , J.-J. Luo, , S. Masson, , M. R. Jury, , and S. A. Rao, 2004: Coupled ocean atmosphere variability in the tropical Indian Ocean. Earth Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 189 –211.

  • Yang, J., , Q. Liu, , S.-P. Xie, , Z. Liu, , and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi:10.1029/2007GL030526.

    • Search Google Scholar
    • Export Citation
  • Yu, Y., , M. Notaro, , Z. Liu, , O. Kalashnikova, , F. Alkolibi, , E. Fadda, , and F. Bakhrjy, 2013: Assessing temporal and spatial variations in atmospheric dust over Saudi Arabia through satellite, radiometric, and station data. J. Geophys. Res. Atmos., 118, 13 25313 264, doi:10.1002/2013JD020677.

    • Search Google Scholar
    • Export Citation
  • Yu, Y., , M. Notaro, , Z. Liu, , F. Wang, , F. Alkolibi, , E. Fadda, , and F. Bakhrjy, 2015: Climatic controls on the interannual to decadal variability in Saudi Arabian dust activity: Toward the development of a seasonal dust prediction model. J. Geophys. Res. Atmos., 120, 17391758, doi:10.1002/2014JD022611.

    • Search Google Scholar
    • Export Citation
  • Zhu, A., , V. Ramanathan, , F. Li, , and D. Kim, 2007: Dust plumes over the Pacific, Indian, and Atlantic Oceans: Climatology and radiative impact. J. Geophys. Res., 112, D16208, doi:10.1029/2007JD008427.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 67 67 20
PDF Downloads 56 56 13

ENSO Modulation of Interannual Variability of Dust Aerosols over the Northwest Indian Ocean

View More View Less
  • 1 National Institute of Oceanography, Council of Scientific and Industrial Research, Dona Paula, Goa, India
© Get Permissions
Restricted access

Abstract

Mineral dust is known to affect many aspects of the climate of the north Indian Ocean (IO). However, what controls its interannual variability over this region is largely unknown. The authors study the mechanism controlling the interannual variability of dust aerosols in the principal dust belts bordering the northwest IO. It is shown that annual dust activity to the north of the Persian Gulf has an inverse relation with preceding precipitation during October–December and soil moisture during current dust season (April–August). These are in turn remotely controlled by El Niño–Southern Oscillation (ENSO) through the modification of the intensity of convection over the Indo-Pacific warm pool region, which affects moisture flux to the dust sources. While La Niña leads to a negative precipitation anomaly and more dust generation during the following summer, El Niño is responsible for the opposite. During the summer following La Niña, the air–sea interaction leads to a lowering of geopotential height over the Indo-Iranian region, resulting in an increased gradient between the Indo-Iranian region and the surrounding regions. This intensifies the dust-transporting northwesterly and northeasterly winds over the Arabian Peninsula. The dust transport by the intensified low-level southwesterlies and upper-level westerlies is the main factor responsible for enhanced dust over the open northwest IO during the years following La Niña. The Indian Ocean dipole potentially impacts the variability of dust over the northwest IO by modifying the moisture associated with El Niño.

National Institute of Oceanography Contribution Number 7787.

Corresponding author address: S. Prasanna Kumar, National Institute of Oceanography, CSIR, Dona Paula, Goa 403004, India. E-mail: prasanna@nio.org

Abstract

Mineral dust is known to affect many aspects of the climate of the north Indian Ocean (IO). However, what controls its interannual variability over this region is largely unknown. The authors study the mechanism controlling the interannual variability of dust aerosols in the principal dust belts bordering the northwest IO. It is shown that annual dust activity to the north of the Persian Gulf has an inverse relation with preceding precipitation during October–December and soil moisture during current dust season (April–August). These are in turn remotely controlled by El Niño–Southern Oscillation (ENSO) through the modification of the intensity of convection over the Indo-Pacific warm pool region, which affects moisture flux to the dust sources. While La Niña leads to a negative precipitation anomaly and more dust generation during the following summer, El Niño is responsible for the opposite. During the summer following La Niña, the air–sea interaction leads to a lowering of geopotential height over the Indo-Iranian region, resulting in an increased gradient between the Indo-Iranian region and the surrounding regions. This intensifies the dust-transporting northwesterly and northeasterly winds over the Arabian Peninsula. The dust transport by the intensified low-level southwesterlies and upper-level westerlies is the main factor responsible for enhanced dust over the open northwest IO during the years following La Niña. The Indian Ocean dipole potentially impacts the variability of dust over the northwest IO by modifying the moisture associated with El Niño.

National Institute of Oceanography Contribution Number 7787.

Corresponding author address: S. Prasanna Kumar, National Institute of Oceanography, CSIR, Dona Paula, Goa 403004, India. E-mail: prasanna@nio.org
Save