• Alexander, M. A., , I. Bladé, , M. Newman, , J. R. Lanzante, , N.-C. Lau, , and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., , J.-W. Kim, , S.-H. Im, , B.-M. Kim, , and J.-H. Park, 2012: Recent and future sea surface temperature trends in tropical Pacific warm pool and cold tongue regions. Climate Dyn., 39, 13731383, doi:10.1007/s00382-011-1129-7.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., , and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berhane, F., , and B. Zaitchik, 2014: Modulation of daily precipitation over East Africa by the Madden–Julian oscillation. J. Climate, 27, 60166034, doi:10.1175/JCLI-D-13-00693.1.

    • Search Google Scholar
    • Export Citation
  • Camberlin, P., , S. Janicot, , and I. Poccard, 2001: Seasonality and atmospheric dynamics of the teleconnection between African rainfall and tropical sea-surface temperature: Atlantic vs. ENSO. Int. J. Climatol., 21, 9731005, doi:10.1002/joc.673.

    • Search Google Scholar
    • Export Citation
  • Chen, M., , W. Shi, , P. Xie, , V. B. S. Silva, , V. E. Kousky, , R. Wayne Higgins, , and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, doi:10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., , and A. H. Sobel, 2002: Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Climate, 15, 26162631, doi:10.1175/1520-0442(2002)015<2616:TTTVCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., , and B. R. Lintner, 2005: Mechanisms of remote tropical surface warming during El Niño. J. Climate, 18, 41304149, doi:10.1175/JCLI3529.1.

    • Search Google Scholar
    • Export Citation
  • Chou, C., , and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701, doi:10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., , G. B. Bonan, , and S. Levis, 2006: Soil moisture feedbacks to precipitation in southern Africa. J. Climate, 19, 41984206, doi:10.1175/JCLI3856.1.

    • Search Google Scholar
    • Export Citation
  • D’Andrea, F., , P. Gentine, , A. K. Betts, , and B. R. Lintner, 2014: Triggering deep convection with a probabilistic plume model. J. Atmos. Sci., 71, 38813901, doi:10.1175/JAS-D-13-0340.1.

    • Search Google Scholar
    • Export Citation
  • Davey, M. K., , A. Brookshaw, , and S. Ineson, 2014: The probability of the impact of ENSO on precipitation and near-surface temperature. Climate Risk Manage., 1, 524, doi:10.1016/j.crm.2013.12.002.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., , J. David Neelin, , and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143, doi:10.1002/qj.49712051902.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., , U. Beyerle, , and R. Knutti, 2013: Robust spatially aggregated projections of climate extremes. Nat. Climate Change, 3, 10331038, doi:10.1038/nclimate2051.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., , A. K. Betts, , B. R. Lintner, , K. L. Findell, , C. C. van Heerwaarden, , and F. D’Andrea, 2013a: A probabilistic bulk model of coupled mixed layer and convection. Part II: Shallow convection case. J. Atmos. Sci., 70, 15571576, doi:10.1175/JAS-D-12-0146.1.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., , A. A. M. Holtslag, , F. D’Andrea, , and M. Ek, 2013b: Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeor., 14, 14431462, doi:10.1175/JHM-D-12-0137.1.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., , R. Saravanan, , and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302, 10271030, doi:10.1126/science.1089357.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., , M. Biasutti, , I. M. Held, , and A. H. Sobel, 2008: A global perspective on African climate. Climatic Change, 90, 359383, doi:10.1007/s10584-008-9396-y.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., , S. Salack, , T. Lodoun, , A. Ali, , A. T. Gaye, , and O. Ndiaye, 2013: A unifying view of climate change in the Sahel linking intra-seasonal, interannual and longer time scales. Environ. Res. Lett., 8, 024010, doi:10.1088/1748-9326/8/2/024010.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., , and N. E. Graham, 1999: Importance of the Indian Ocean for simulating rainfall anomalies over eastern and southern Africa. J. Geophys. Res., 104, 19 09919 116, doi:10.1029/1999JD900326.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., , and P. K. Xavier, 2005: ENSO control on the South Asian monsoon through the length of the rainy season. Geophys. Res. Lett., 32, L18717, doi:10.1029/2005GL023216.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., , and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107, doi:10.1175/2009BAMS2607.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , T. L. Delworth, , J. Lu, , K. L. Findell, , and T. R. Knutson, 2005: Simulation of Sahel drought in the 20th and 21st centuries. Proc. Natl. Acad. Sci. USA, 102, 17 89117 896, doi:10.1073/pnas.0509057102.

    • Search Google Scholar
    • Export Citation
  • Herceg, D., , A. H. Sobel, , and L. Sun, 2007: Regional modeling of decadal rainfall variability over the Sahel. Climate Dyn., 29, 8999, doi:10.1007/s00382-006-0218-5.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., , and J. D. Neelin, 2010: Temporal relations of column water vapor and tropical precipitation. J. Atmos. Sci., 67, 10911105, doi:10.1175/2009JAS3284.1.

    • Search Google Scholar
    • Export Citation
  • Indeje, M., , F. H. M. Semazzi, , and L. J. Ogallo, 2000: ENSO signals in East African rainfall seasons. Int. J. Climatol., 20, 1946, doi:10.1002/(SICI)1097-0088(200001)20:1<19::AID-JOC449>3.0.CO;2-0.

    • Search Google Scholar
    • Export Citation
  • Janicot, S., , V. Moron, , and B. Fontaine, 1996: Sahel droughts and ENSO dynamics. Geophys. Res. Lett., 23, 515518, doi:10.1029/96GL00246.

    • Search Google Scholar
    • Export Citation
  • Janicot, S., , S. Trzaska, , and I. Poccard, 2001: Summer Sahel-ENSO teleconnection and decadal time scale SST variations. Climate Dyn., 18, 303320, doi:10.1007/s003820100172.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., , and S.-P. Xie, 2010: Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci., 3, 842845, doi:10.1038/ngeo1008.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., , W. Ebisuzaki, , J. Woollen, , S.-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., , M. A. Cane, , Y. Kushnir, , A. C. Clement, , M. B. Blumenthal, , and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18 56718 589, doi:10.1029/97JC01736.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , B. J. Soden, , and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, doi:10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., , and M. J. Suarez, 2001: Soil moisture memory in climate models. J. Hydrometeor., 2, 558570, doi:10.1175/1525-7541(2001)002<0558:SMMICM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lavender, S. L., , and A. J. Matthews, 2009: Response of the West African monsoon to the Madden–Julian oscillation. J. Climate, 22, 40974116, doi:10.1175/2009JCLI2773.1.

    • Search Google Scholar
    • Export Citation
  • Lee, J., and Coauthors, 2012: Reduction of tropical land region precipitation variability via transpiration. Geophys. Res. Lett., 39, L19704, doi:10.1029/2012GL053417.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., , S. Vavrus, , F. He, , N. Wen, , and Y. Zhong, 2005: Rethinking tropical ocean response to global warming: The enhanced equatorial warming. J. Climate, 18, 46844700, doi:10.1175/JCLI3579.1.

    • Search Google Scholar
    • Export Citation
  • Losada, T., , B. Rodriguez-Fonseca, , E. Mohino, , J. Bader, , S. Janicot, , and C. R. Mechoso, 2012: Tropical SST and Sahel rainfall: A non-stationary relationship. Geophys. Res. Lett., 39, L12705, doi:10.1029/2012GL052423.

    • Search Google Scholar
    • Export Citation
  • Lu, J., 2009: The dynamics of the Indian Ocean sea surface temperature forcing of Sahel drought. Climate Dyn., 33, 445460, doi:10.1007/s00382-009-0596-6.

    • Search Google Scholar
    • Export Citation
  • Lyon, B., , and A. G. Barnston, 2005: ENSO and the spatial extent of interannual precipitation extremes in tropical land areas. J. Climate, 18, 50955109, doi:10.1175/JCLI3598.1.

    • Search Google Scholar
    • Export Citation
  • Lyon, B., , and S. J. Mason, 2007: The 1997–98 summer rainfall season in southern Africa. Part I: Observations. J. Climate, 20, 51345148, doi:10.1175/JCLI4225.1.

    • Search Google Scholar
    • Export Citation
  • Marsaglia, G., , W. Tsang, , and J. Wang, 2003: Evaluating Kolmogorov’s distribution. J. Stat. Software, 8, doi:10.18637/jss.v008.i18.

  • Mathon, V., , H. Laurent, , and T. Lebel, 2002: Mesoscale convective system rainfall in the Sahel. J. Appl. Meteor., 41, 10811092, doi:10.1175/1520-0450(2002)041<1081:MCSRIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , and W. M. Washington, 1996: El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature, 382, 5660, doi:10.1038/382056a0.

    • Search Google Scholar
    • Export Citation
  • Mohino, E., , B. Rodríguez-Fonseca, , C. R. Mechoso, , S. Gervois, , P. Ruti, , and F. Chauvin, 2011: Impacts of the tropical Pacific/Indian Oceans on the seasonal cycle of the West African monsoon. J. Climate, 24, 38783891, doi:10.1175/2011JCLI3988.1.

    • Search Google Scholar
    • Export Citation
  • Moron, V., , A. W. Robertson, , M. N. Ward, , and P. Camberlin, 2007: Spatial coherence of tropical rainfall at the regional scale. J. Climate, 20, 52445263, doi:10.1175/2007JCLI1623.1.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , C. Chou, , and H. Su, 2003: Tropical drought regions in global warming and El Niño teleconnections. Geophys. Res. Lett., 30, 2275, doi:10.1029/2003GL018625.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , O. Peters, , J. W.-B. Lin, , K. Hales, , and C. E. Holloway, 2008: Rethinking convective quasi-equilibrium: Observational constraints for stochastic convective schemes in climate models. Philos. Trans. Roy. Soc. London, 366A, 25812604, doi:10.1098/rsta.2008.0056.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2013: The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. ISRN Meteorology, 2013, 453521, doi:10.1155/2013/453521.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., , and J. Kim, 1997: The relationship of the El Nino–Southern Oscillation to African rainfall. Int. J. Climatol., 17, 117135, doi:10.1002/(SICI)1097-0088(199702)17:2<117::AID-JOC84>3.0.CO;2-O.

    • Search Google Scholar
    • Export Citation
  • Novella, N. S., , and W. M. Thiaw, 2013: African rainfall climatology version 2 for famine early warning systems. J. Appl. Meteor. Climatol., 52, 588606, doi:10.1175/JAMC-D-11-0238.1.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2012: Sensitivity of tropical precipitation extremes to climate change. Nat. Geosci., 5, 697700, doi:10.1038/ngeo1568.

    • Search Google Scholar
    • Export Citation
  • Okonkwo, C., 2014: An advanced review of the relationships between Sahel precipitation and climate indices: A wavelet approach.. Int. J. Atmos. Sci., 2014, 759067, doi:10.1155/2014/759067.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., , and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843, doi:10.1175/2010JCLI3592.1.

    • Search Google Scholar
    • Export Citation
  • Paeth, H., , and P. Friederichs, 2004: Seasonality and time scales in the relationship between global SST and African rainfall. Climate Dyn., 23, 815837, doi:10.1007/s00382-004-0466-1.

    • Search Google Scholar
    • Export Citation
  • Peters, O., , and J. D. Neelin, 2006: Critical phenomena in atmospheric precipitation. Nat. Phys., 2, 393396, doi:10.1038/nphys314.

  • Philippon, N., , N. Martiny, , P. Camberlin, , M. T. Hoffman, , and V. Gond, 2014: Timing and patterns of the ENSO signal in Africa over the last 30 years: Insights from normalized difference vegetation index data. J. Climate, 27, 25092532, doi:10.1175/JCLI-D-13-00365.1.

    • Search Google Scholar
    • Export Citation
  • Pohl, B., , and P. Camberlin, 2006: Influence of the Madden–Julian oscillation on East African rainfall. I: Intraseasonal variability and regional dependency. Quart. J. Roy. Meteor. Soc., 132, 25212539, doi:10.1256/qj.05.104.

    • Search Google Scholar
    • Export Citation
  • Polo, I., , B. Rodríguez-Fonseca, , T. Losada, , and J. García-Serrano, 2008: Tropical Atlantic variability modes (1979–2002). Part I: Time-evolving SST modes related to West African rainfall. J. Climate, 21, 64576475, doi:10.1175/2008JCLI2607.1.

    • Search Google Scholar
    • Export Citation
  • Rajagopalan, B., , and P. Molnar, 2014: Combining regional moist static energy and ENSO for forecasting of early and late season Indian monsoon rainfall and its extremes. Geophys. Res. Lett., 41, 43234331, doi:10.1002/2014GL060429.

    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., , and M. Rouault, 2002: ENSO-like decadal variability and South African rainfall. Geophys. Res. Lett., 29, 1638, doi:10.1029/2002GL014663.

    • Search Google Scholar
    • Export Citation
  • Rodríguez-Fonseca, B., and Coauthors, 2011: Interannual and decadal SST-forced responses of the West African monsoon. Atmos. Sci. Lett., 12, 6774, doi:10.1002/asl.308.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., , and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 2001: Teleconnections between the tropical Pacific and the Sahel. Quart. J. Roy. Meteor. Soc., 127, 16831706, doi:10.1002/qj.49712757512.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., , and P. Chang, 2000: Interaction between tropical Atlantic variability and El Niño–Southern Oscillation. J. Climate, 13, 21772194, doi:10.1175/1520-0442(2000)013<2177:IBTAVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sheather, S. J., 1991: A reliable data-based bandwidth selection method for kernel density estimation. J. Roy. Stat. Soc., 53B, 683690.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , J. Nilsson, , and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, doi:10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Song, X., , and G. J. Zhang, 2014: Role of climate feedback in El Niño–like SST response to global warming. J. Climate, 27, 73017318, doi:10.1175/JCLI-D-14-00072.1.

    • Search Google Scholar
    • Export Citation
  • Tang, B. H., , and J. D. Neelin, 2004: ENSO Influence on Atlantic hurricanes via tropospheric warming. Geophys. Res. Lett., 31, L24204, doi:10.1029/2004GL021072.

    • Search Google Scholar
    • Export Citation
  • Teng, H., , L. E. Buja, , and G. A. Meehl, 2006: Twenty-first-century climate change commitment from a multi-model ensemble. Geophys. Res. Lett., 33, L07706, doi:10.1029/2005GL024766.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, doi:10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tsintikidis, D., , and G. J. Zhang, 1998: A numerical study on the coupling between sea surface temperature and surface evaporation. J. Geophys. Res., 103, 31 76331 774, doi:10.1029/1998JD200027.

    • Search Google Scholar
    • Export Citation
  • Ward, M. N., 1998: Diagnosis and short-lead time prediction of summer rainfall in tropical North Africa at interannual and multidecadal timescales. J. Climate, 11, 31673191, doi:10.1175/1520-0442(1998)011<3167:DASLTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weller, E., , and W. Cai, 2013: Asymmetry in the IOD and ENSO teleconnection in a CMIP5 model ensemble and its relevance to regional rainfall. J. Climate, 26, 51395149, doi:10.1175/JCLI-D-12-00789.1.

    • Search Google Scholar
    • Export Citation
  • Xavier, P. K., , C. Marzin, , and B. N. Goswami, 2007: An objective definition of the Indian summer monsoon season and a new perspective on the ENSO–monsoon relationship. Quart. J. Roy. Meteor. Soc., 133, 749764, doi:10.1002/qj.45.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , M. Chen, , S. Yang, , A. Yatagai, , T. Hayasaka, , Y. Fukushima, , and C. Liu, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626, doi:10.1175/JHM583.1.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., , Y.-G. Ham, , and J.-Y. Lee, 2012: Changes in the tropical Pacific SST trend from CMIP3 to CMIP5 and its implication of ENSO. J. Climate, 25, 77647771, doi:10.1175/JCLI-D-12-00304.1.

    • Search Google Scholar
    • Export Citation
  • Zeng, N., , J. D. Neelin, , K. M. Lau, , and C. J. Tucker, 1999: Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science, 286, 15371540, doi:10.1126/science.286.5444.1537.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 66 66 14
PDF Downloads 49 49 14

Resolving Contrasting Regional Rainfall Responses to El Niño over Tropical Africa

View More View Less
  • 1 Department of Earth and Environmental Engineering, Columbia University, New York
  • 2 International Research Institute for Climate and Society, Earth Institute, Columbia University, New York
  • 3 Department of Earth and Environmental Engineering, and Columbia Water Center, Earth Institute, Columbia University, New York
  • 4 Department of Earth and Environmental Engineering, International Research Institute for Climate and Society, and Columbia Water Center, Earth Institute, Columbia University, New York
© Get Permissions
Restricted access

Abstract

The evolution of El Niño can be separated into two phases—namely, growth and mature—depending on whether the regional sea surface temperature has adjusted to the tropospheric warming in the remote tropics (tropical regions away from the central and eastern tropical Pacific Ocean). The western Sahel’s main rainy season (July–September) is shown to be affected by the growth phase of El Niño through (i) a lack of neighboring North Atlantic sea surface warming, (ii) an absence of an atmospheric column water vapor anomaly over the North Atlantic and western Sahel, and (iii) higher atmospheric vertical stability over the western Sahel, resulting in the suppression of mean seasonal rainfall as well as number of wet days. In contrast, the short rainy season (October–December) of tropical eastern Africa is impacted by the mature phase of El Niño through (i) neighboring Indian Ocean sea surface warming, (ii) positive column water vapor anomalies over the Indian Ocean and tropical eastern Africa, and (iii) higher atmospheric vertical instability over tropical eastern Africa, leading to an increase in the mean seasonal rainfall as well as in the number of wet days. While the modulation of the frequency of wet days and seasonal mean accumulation is statistically significant, daily rainfall intensity (for days with rainfall > 1 mm day−1), whether mean, median, or extreme, does not show a significant response in either region. Hence, the variability in seasonal mean rainfall that can be attributed to the El Niño–Southern Oscillation phenomenon in both regions is likely due to changes in the frequency of rainfall.

Denotes Open Access content.

Corresponding author address: Pradipta Parhi, Department of Earth and Environment Engineering, Columbia University, 500 W. 120th Street, New York, NY 10027. E-mail: pp2417@columbia.edu

Abstract

The evolution of El Niño can be separated into two phases—namely, growth and mature—depending on whether the regional sea surface temperature has adjusted to the tropospheric warming in the remote tropics (tropical regions away from the central and eastern tropical Pacific Ocean). The western Sahel’s main rainy season (July–September) is shown to be affected by the growth phase of El Niño through (i) a lack of neighboring North Atlantic sea surface warming, (ii) an absence of an atmospheric column water vapor anomaly over the North Atlantic and western Sahel, and (iii) higher atmospheric vertical stability over the western Sahel, resulting in the suppression of mean seasonal rainfall as well as number of wet days. In contrast, the short rainy season (October–December) of tropical eastern Africa is impacted by the mature phase of El Niño through (i) neighboring Indian Ocean sea surface warming, (ii) positive column water vapor anomalies over the Indian Ocean and tropical eastern Africa, and (iii) higher atmospheric vertical instability over tropical eastern Africa, leading to an increase in the mean seasonal rainfall as well as in the number of wet days. While the modulation of the frequency of wet days and seasonal mean accumulation is statistically significant, daily rainfall intensity (for days with rainfall > 1 mm day−1), whether mean, median, or extreme, does not show a significant response in either region. Hence, the variability in seasonal mean rainfall that can be attributed to the El Niño–Southern Oscillation phenomenon in both regions is likely due to changes in the frequency of rainfall.

Denotes Open Access content.

Corresponding author address: Pradipta Parhi, Department of Earth and Environment Engineering, Columbia University, 500 W. 120th Street, New York, NY 10027. E-mail: pp2417@columbia.edu
Save