• Alvarez-Garcia, F., , M. Latif, , and A. Biastoch, 2008: On multidecadal and quasi-decadal North Atlantic variability. J. Climate, 21, 34333452, doi:10.1175/2007JCLI1800.1.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and Coauthors, 2011: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett., 38, L05805, doi:10.1029/2010GL046270.

    • Search Google Scholar
    • Export Citation
  • Bellucci, A., and Coauthors, 2015: An assessment of a multi-model ensemble of decadal climate predictions. Climate Dyn., 44, 27872806, doi:10.1007/s00382-014-2164-y.

    • Search Google Scholar
    • Export Citation
  • Caron, L.-P., , C. G. Jones, , and F. Doblas-Reyes, 2014: Multi-year prediction skill of Atlantic hurricane activity in CMIP5 decadal hindcasts. Climate Dyn., 42, 26752690, doi:10.1007/s00382-013-1773-1.

    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., and Coauthors, 2015: Skilful multi-year predictions of tropical trans-basin climate variability. Nat. Commun., 6, 6869, doi:10.1038/ncomms7869.

    • Search Google Scholar
    • Export Citation
  • CLIVAR, 2011: Data and bias correction for decadal climate prediction. International CLIVAR Project Office Publication Series 150, 5 pp.

    • Search Google Scholar
    • Export Citation
  • Corti, S., , A. Weisheimer, , T. N. Palmer, , F. J. Doblas-Reyes, , and L. Magnusson, 2012: Reliability of decadal predictions. Geophys. Res. Lett., 39, L21712, doi:10.1029/2012GL053354.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., , and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 18301841, doi:10.1002/qj.493.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., , and M. K. Tippett, 2014: Comparing forecast skill. Mon. Wea. Rev., 142, 46584678, doi:10.1175/MWR-D-14-00045.1.

  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., and Coauthors, 2013: Initialized near-term regional climate change prediction. Nat. Commun., 4, 1715, doi:10.1038/ncomms2704.

    • Search Google Scholar
    • Export Citation
  • Dunstone, N. J., , D. M. Smith, , and E. Eade, 2011: Multi-year predictability of the tropical Atlantic atmosphere driven by the high latitude North Atlantic Ocean. Geophys. Res. Lett., 38, L14701, doi:10.1029/2011GL047949.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., and Coauthors, 2013: A verification framework for interannual-to-decadal predictions experiments. Climate Dyn., 40, 245272, doi:10.1007/s00382-012-1481-2.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., , M. M. Rienecker, , M. J. Suarez, , Y. Vikhliaev, , B. Zhao, , J. Marshak, , G. Vernieres, , and S. D. Schubert, 2014: Decadal prediction skill in the GEOS-5 forecast system. Climate Dyn., 42, 120, doi:10.1007/s00382-013-1858-x.

    • Search Google Scholar
    • Export Citation
  • Ho, C. K., , E. Hawkins, , L. Shaffrey, , J. Bröcker, , L. Hermanson, , J. M. Murphy, , D. M. Smith, , and R. Eade, 2013: Examining reliability of seasonal to decadal sea surface temperature forecast: The role of ensemble dispersion. Geophys. Res. Lett., 40, 57705775, doi:10.1002/2013GL057630.

    • Search Google Scholar
    • Export Citation
  • Honda, M., , J. Inoue, , and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

  • Jeong, H.-I., and Coauthors, 2012: Assessment of the APCC coupled MME suite in predicting the distinctive climate impacts of two flavors of ENSO during boreal winter. Climate Dyn., 39, 475493, doi:10.1007/s00382-012-1359-3.

    • Search Google Scholar
    • Export Citation
  • Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean–atmosphere models. Climate Dyn., 31, 647664, doi:10.1007/s00382-008-0397-3.

    • Search Google Scholar
    • Export Citation
  • Jun, S.-Y., , C.-H. Ho, , B.-M. Kim, , and J.-H. Jeong, 2014: Sensitivity of Arctic warming to sea surface temperature distribution over melted sea-ice region in atmospheric general circulation model experiments. Climate Dyn., 42, 941955, doi:10.1007/s00382-013-1897-3.

    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., , S.-W. Son, , S.-K. Min, , J.-H. Jeong, , S.-J. Kim, , X. Zhang, , T. Shim, , and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, doi:10.1038/ncomms5646.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., , P. J. Webster, , and J. A. Curry, 2012: Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts. Geophys. Res. Lett., 39, L10701, doi:10.1029/2012GL051644.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., , Y.-G. Ham, , and A. A. Scaife, 2014: Improvement of initialized decadal predictions over the North Pacific Ocean by systematic anomaly pattern correction. J. Climate, 27, 51485162, doi:10.1175/JCLI-D-13-00519.1.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, doi:10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., , B. Wang, , Q. Ding, , K.-J. Ha, , J.-B. Ahn, , A. Kumar, , B. Stern, , and O. Alves, 2011: How predictable is the Northern Hemisphere summer upper-tropospheric circulation? Climate Dyn., 37, 11891203, doi:10.1007/s00382-010-0909-9.

    • Search Google Scholar
    • Export Citation
  • Lim, Y.-K., , Y.-G. Ham, , J.-H. Jeong, , and J.-S. Kug, 2012: Improvement in simulation of Eurasian winter climate variability with a realistic Arctic sea ice condition in an atmospheric GCM. Environ. Res. Lett., 7, 044041, doi:10.1088/1748-9326/7/4/044041.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., , S. Masson, , S. K. Behera, , and T. Yamagata, 2008: Extended ENSO predictions using a fully coupled ocean–atmosphere model. J. Climate, 21, 8493, doi:10.1175/2007JCLI1412.1.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., , S. K. Behera, , Y. Masumoto, , and T. Yamagata, 2011: Impact of global ocean surface warming on seasonal-to-interannual climate prediction. J. Climate, 24, 16261646, doi:10.1175/2010JCLI3645.1.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., , W. Sasaki, , and Y. Masumoto, 2012: Indian Ocean warming modulates Pacific climate change. Proc. Natl. Acad. Sci. USA, 109, 18 70118 706, doi:10.1073/pnas.1210239109.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., , C. Yuan, , W. Sasaki, , S. K. Behera, , Y. Masumoto, , T. Yamagata, , J.-Y. Lee, , and S. Masson, 2016: Current status of intraseasonal–seasonal-to-interannual prediction of the Indo-Pacific climate. Indo-Pacific Climate Variability and Predictability, S. K. Behera and T. Yamagata, Eds., World Scientific Series on Asia-Pacific Weather and Climate, Vol. 7, World Scientific, 324 pp.

  • Matei, D., , H. Pohlmann, , J. Jungclaus, , W. Müller, , H. Haak, , and J. Marotzke, 2012: Two tales of initializing decadal climate prediction experiments with the ECHAM5/MPI-OM model. J. Climate, 25, 85028523, doi:10.1175/JCLI-D-11-00633.1.

    • Search Google Scholar
    • Export Citation
  • Materia, S., , A. Borrelli, , A. Bellucci, , A. Alessandri, , P. Di Petro, , P. Athanasiadis, , A. Navarra, , and S. Gualdi, 2014: Impact of atmosphere and land surface initial conditions on seasonal forecasts of global surface temperature. J. Climate, 27, 92539271, doi:10.1175/JCLI-D-14-00163.1.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., , T. Lee, , and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett., 38, L15709, doi:10.1029/2011GL048275.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , and H. Teng, 2014: CMIP5 multi-model hindcasts for the mid-1970s shift and early 2000s hiatus and predictions for 2016–2035. Geophys. Res. Lett., 41, 17111716, doi:10.1002/2014GL059256.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2014: Decadal climate prediction: An update from the trenches. Bull. Amer. Meteor. Soc., 95, 243267, doi:10.1175/BAMS-D-12-00241.1.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 24172424, doi:10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Outten, S. D., , R. Davy, , and I. Esau, 2013: Eurasian winter cooling: Intercomparison of reanalyses and CMIP5 data sets. Atmos. Oceanic Sci. Lett., 6, 324331, doi:10.1080/16742834.2013.11447102.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., , K. R. Wood, , and M. Wang, 2011: Warm Arctic–cold continents: Climate impacts of the newly open Arctic Sea. Polar Res., 30, 15 787, doi:10.3402/polar.v30i0.15787.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., and Coauthors, 2004: Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER). Bull. Amer. Meteor. Soc., 85, 853872, doi:10.1175/BAMS-85-6-853.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., , I. Simmonds, , C. Deser, , and R. Tomas, 2013: The atmospheric response to three decades of observed Arctic sea ice loss. J. Climate, 26, 12301248, doi:10.1175/JCLI-D-12-00063.1.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., , S. Cusack, , A. W. Colman, , C. K. Folland, , G. R. Harris, , and J. M. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796799, doi:10.1126/science.1139540.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., , R. Eade, , N. J. Dunstone, , D. Fereday, , J. M. Murphy, , H. Pohlmann, , and A. A. Scaife, 2010: Skillful multi-year predictions of Atlantic hurricane frequency. Nat. Geosci., 3, 846849, doi:10.1038/ngeo1004.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., , R. Eade, , and H. Pohlmann, 2013: A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Climate Dyn., 41, 33253338, doi:10.1007/s00382-013-1683-2.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA's historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., and Coauthors, 2011: ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Climate Dyn., 37, 455471, doi:10.1007/s00382-010-0947-3.

    • Search Google Scholar
    • Export Citation
  • Tatebe, H., and Coauthors, 2012: The initialization of the MIROC climate models with hydrographic data assimilation for decadal prediction. J. Meteor. Soc. Japan, 90A, 275294, doi:10.2151/jmsj.2012-A14.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • van Oldenborgh, G. J., , F. Doblas-Reyes, , B. Wouters, , and W. Hazeleger, 2012: Decadal prediction skill in a multi-model ensemble. Climate Dyn., 38, 12631280, doi:10.1007/s00382-012-1313-4.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2009: Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn., 33, 93117, doi:10.1007/s00382-008-0460-0.

    • Search Google Scholar
    • Export Citation
  • Weisheimer, A., and Coauthors, 2009: ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions—Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophys. Res. Lett., 36, L21711, doi:10.1029/2009GL040896.

    • Search Google Scholar
    • Export Citation
  • Wu, T., and Coauthors, 2014: An overview of BCC climate system model development and application for climate change studies. J. Meteor. Res., 28, 3456.

    • Search Google Scholar
    • Export Citation
  • Yoo, J.-H., , and I.-S. Kang, 2005: Theoretical examination of a multi-model composite for seasonal prediction. Geophys. Res. Lett., 32, L15711, doi:10.1029/2005GL023513.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 38 38 11
PDF Downloads 27 27 8

Seasonal-to-Interannual Prediction Skills of Near-Surface Air Temperature in the CMIP5 Decadal Hindcast Experiments

View More View Less
  • 1 School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
  • 2 Department of Oceanography, Chonnam National University, Gwangju, South Korea
  • 3 Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University, Busan, South Korea
  • 4 School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York
© Get Permissions
Restricted access

Abstract

This study explores the seasonal-to-interannual near-surface air temperature (TAS) prediction skills of state-of-the-art climate models that were involved in phase 5 of the Coupled Model Intercomparison Project (CMIP5) decadal hindcast/forecast experiments. The experiments are initialized in either November or January of each year and integrated for up to 10 years, providing a good opportunity for filling the gap between seasonal and decadal climate predictions. The long-lead multimodel ensemble (MME) prediction is evaluated for 1981–2007 in terms of the anomaly correlation coefficient (ACC) and mean-squared skill score (MSSS), which combines ACC and conditional bias, with respect to observations and reanalysis data, paying particular attention to the seasonal dependency of the global-mean and equatorial Pacific TAS predictions. The MME shows statistically significant ACCs and MSSSs for the annual global-mean TAS for up to two years, mainly because of long-term global warming trends. When the long-term trends are removed, the prediction skill is reduced. The prediction skills are generally lower in boreal winters than in other seasons regardless of lead times. This lack of winter prediction skill is attributed to the failure of capturing the long-term trend and interannual variability of TAS over high-latitude continents in the Northern Hemisphere. In contrast to global-mean TAS, regional TAS over the equatorial Pacific is predicted well in winter. This is mainly due to a successful prediction of the El Niño–Southern Oscillation (ENSO). In most models, the wintertime ENSO index is reasonably well predicted for at least one year in advance. The sensitivity of the prediction skill to the initialized month and method is also discussed.

Corresponding author address: Seok-Woo Son, School of Earth and Environmental Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea. E-mail: seokwooson@snu.ac.kr

Abstract

This study explores the seasonal-to-interannual near-surface air temperature (TAS) prediction skills of state-of-the-art climate models that were involved in phase 5 of the Coupled Model Intercomparison Project (CMIP5) decadal hindcast/forecast experiments. The experiments are initialized in either November or January of each year and integrated for up to 10 years, providing a good opportunity for filling the gap between seasonal and decadal climate predictions. The long-lead multimodel ensemble (MME) prediction is evaluated for 1981–2007 in terms of the anomaly correlation coefficient (ACC) and mean-squared skill score (MSSS), which combines ACC and conditional bias, with respect to observations and reanalysis data, paying particular attention to the seasonal dependency of the global-mean and equatorial Pacific TAS predictions. The MME shows statistically significant ACCs and MSSSs for the annual global-mean TAS for up to two years, mainly because of long-term global warming trends. When the long-term trends are removed, the prediction skill is reduced. The prediction skills are generally lower in boreal winters than in other seasons regardless of lead times. This lack of winter prediction skill is attributed to the failure of capturing the long-term trend and interannual variability of TAS over high-latitude continents in the Northern Hemisphere. In contrast to global-mean TAS, regional TAS over the equatorial Pacific is predicted well in winter. This is mainly due to a successful prediction of the El Niño–Southern Oscillation (ENSO). In most models, the wintertime ENSO index is reasonably well predicted for at least one year in advance. The sensitivity of the prediction skill to the initialized month and method is also discussed.

Corresponding author address: Seok-Woo Son, School of Earth and Environmental Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea. E-mail: seokwooson@snu.ac.kr
Save