• Balmaseda, M. A., , L. Ferranti, , F. Molteni, , and T. N. Palmer, 2010: Impact of 2007 and 2008 Arctic ice anomalies on the atmospheric circulation: Implications for long-range predictions. Quart. J. Roy. Meteor. Soc., 136, 16551664, doi:10.1002/qj.661.

    • Search Google Scholar
    • Export Citation
  • Belchansky, G. I., , and D. C. Douglas, 2002: Seasonal comparisons of sea ice concentration estimates derived from SSM/I, OKEAN, and RADARSAT data. Remote Sens. Environ., 81, 6781, doi:10.1016/S0034-4257(01)00333-9.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., , C. L. Parkinson, , P. Gloersen, , and H. J. Zwally, 1996: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, subset used: Northern Hemisphere daily data (updated yearly), accessed 13 May 2015, doi:10.5067/8GQ8LZQVL0VL.

  • Chapman, D., , M. A. Cane, , N. Henderson, , D. E. Lee, , and C. Chen, 2015: A vector autoregressive ENSO prediction model. J. Climate, 28, 85118520, doi:10.1175/JCLI-D-15-0306.1.

    • Search Google Scholar
    • Export Citation
  • Chen, D., , and X. Yuan, 2004: A Markov model for seasonal forecast of Antarctic sea ice. J. Climate, 17, 31563168, doi:10.1175/1520-0442(2004)017<3156:AMMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chevallier, M., , D. Salas y Melia, , A. Voldoire, , M. Déqué, , and G. Garric, 2013: Seasonal forecasts of the pan-Arctic sea ice extent using a GCM-based seasonal prediction system. J. Climate, 26, 60926104, doi:10.1175/JCLI-D-12-00612.1.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2000: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, version 2. National Snow and Ice Data Center Distributed Active Archive Center, subset used: Northern Hemisphere daily data (updated yearly), accessed 27 August 2014, doi:10.5067/J6JQLS9EJ5HU.

  • Deser, C., , and H. Teng, 2008: Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing, 1979–2007. Geophys. Res. Lett., 35, L02504, doi:10.1029/2007GL032023.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , J. E. Walsh, , and M. S. Timlin, 2000: Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Climate, 13, 617633, doi:10.1175/1520-0442(2000)013<0617:ASIVIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eicken, H., 2013: Arctic sea ice needs better forecasts. Nature, 497, 431433, doi:10.1038/497431a.

  • Fang, Z., , and J. M. Wallace, 1994: Arctic sea ice variability on a timescale of weeks and its relation to atmospheric forcing. J. Climate, 7, 18971914, doi:10.1175/1520-0442(1994)007<1897:ASIVOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farré, A. B., and Coauthors, 2014: Commercial Arctic shipping through the Northeast Passage: Routes, resources, governance, technology, and infrastructure. Polar Geogr., 37, 298324, doi:10.1080/1088937X.2014.965769.

    • Search Google Scholar
    • Export Citation
  • Fučkar, N. S., , D. Volpi, , V. Guemas, , and F. J. Doblas-Reyes, 2014: A posteriori adjustment of near-term climate predictions: Accounting for the drift dependence on the initial conditions. Geophys. Res. Lett., 41, 52005207, doi:10.1002/2014GL060815.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., , and K. Bryan, 1997: A predictability study of simulated North Atlantic multidecadal variability. Climate Dyn., 13, 459487, doi:10.1007/s003820050177.

    • Search Google Scholar
    • Export Citation
  • Guemas, V., and Coauthors, 2016: A review on Arctic sea-ice predictability and prediction on seasonal to decadal time-scales. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2401, in press.

    • Search Google Scholar
    • Export Citation
  • Henderson, G. R., , B. S. Barrett, , and D. M. Lafleur, 2014: Arctic sea ice and the Madden–Julian oscillation (MJO). Climate Dyn., 43, 21852196, doi:10.1007/s00382-013-2043-y.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., , and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221232, doi:10.1007/s00382-003-0332-6.

    • Search Google Scholar
    • Export Citation
  • Johnstone, I., 2001: On the distribution of the largest eigenvalue in principal components analysis. Ann. Stat., 29, 295327, doi:10.1214/aos/1009210544.

    • Search Google Scholar
    • Export Citation
  • Kapsch, M.-L., , R. G. Graversen, , and M. Tjernström, 2013: Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nat. Climate Change, 3, 744748, doi:10.1038/nclimate1884.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., , G. J. Boer, , W. J. Merryfield, , J. F. Scinocca, , and W.-S. Lee, 2012: Statistical adjustment of decadal predictions in a changing climate. Geophys. Res. Lett., 39, L19705, doi:10.1029/2012GL052647.

    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., , S.-W. Son, , S.-K. Min, , J.-H. Jeong, , S.-J. Kim, , X. Dong, , T. Shim, , and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, doi:10.1038/ncomms5646.

    • Search Google Scholar
    • Export Citation
  • Koenigk, T., , and U. Mikolajewicz, 2009: Seasonal to interannual climate predictability in mid and high northern latitudes in a global coupled model. Climate Dyn., 32, 783798, doi:10.1007/s00382-008-0419-1.

    • Search Google Scholar
    • Export Citation
  • Kravtsov, S., , D. Kondrachov, , and M. Ghil, 2009: Empirical model reduction and the modeling hierarchy in climate dynamics. Stochastic Physics and Climate Modeling, T. Palmer and T. Williams, Eds., Cambridge University Press, 35–72.

    • Search Google Scholar
    • Export Citation
  • Lee, D. E., , D. Chapman, , N. Henderson, , C. Chen, , and M. Cane, 2015: Multilevel vector autoregressive prediction of sea surface temperature in the north tropical Atlantic Ocean and the Caribbean Sea. Climate Dyn., 112, doi:10.1007/s00382-015-2825-5.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., , J. Zhang, , A. J. Schweiger, , and M. A. Steele, 2008: Seasonal predictions of ice extent in the Arctic Ocean. J. Geophys. Res., 113, C02023, doi:10.1029/2007JC004259.

    • Search Google Scholar
    • Export Citation
  • Liu, J., , J. A. Curry, , H. Wang, , M. Song, , and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, doi:10.1073/pnas.1114910109.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., , and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys., 45, doi:10.1029/2005RG000172.

    • Search Google Scholar
    • Export Citation
  • Love, B. S., , A. J. Matthews, , and G. J. Janacek, 2008: Real-time extraction of the Madden–Julian oscillation using empirical mode decomposition and statistical forecasting with a VARMA model. J. Climate, 21, 53185335, doi:10.1175/2008JCLI1977.1.

    • Search Google Scholar
    • Export Citation
  • Lütkepohl, H., 2005: New Introduction to Multiple Time Series Analysis. Springer, 764 pp.

  • Matthewman, N. J., , and G. Magnusdottir, 2011: Observed interaction between Pacific sea ice and the western Pacific pattern on intraseasonal time scales. J. Climate, 24, 50315042, doi:10.1175/2011JCLI4216.1.

    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., , W. S. Lee, , W. Wang, , M. Chen, , and A. Kumar, 2013: Multi-system seasonal predictions of Arctic sea ice. Geophys. Res. Lett., 40, 15511556, doi:10.1002/grl.50317.

    • Search Google Scholar
    • Export Citation
  • Msadek, R., , G. A. Vecchi, , M. Winton, , and R. G. Gudgel, 2014: Importance of initial conditions in seasonal predictions of Arctic sea ice extent. Geophys. Res. Lett., 41, 52085215, doi:10.1002/2014GL060799.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., , and D. J. Cavalieri, 2008: Arctic sea ice variability and trends, 1979–2006. J. Geophys. Res., 113, C07003, doi:10.1029/2007JC004558.

    • Search Google Scholar
    • Export Citation
  • Peterson, K. A., , A. Arribas, , H. T. Hewitt, , A. B. Keen, , D. J. Lea, , and A. J. McLaren, 2015: Assessing the forecast skill of Arctic sea ice extent in the GloSea4 seasonal prediction system. Climate Dyn., 44, 147162, doi:10.1007/s00382-014-2190-9.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., , A. V. Pnyushkov, , and L. A. Timokhov, 2012: Warming of the intermediate Atlantic water of the Arctic Ocean in the 2000s. J. Climate, 25, 83628370, doi:10.1175/JCLI-D-12-00266.1.

    • Search Google Scholar
    • Export Citation
  • Porter, D. F., , J. J. Cassano, , and M. C. Serreze, 2012: Local and large-scale atmospheric responses to reduced Arctic sea ice and ocean warming in the WRF Model. J. Geophys. Res., 117, D11115, doi:10.1029/2011JD016969.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 25142519, doi:10.1002/2014GL059637.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., , C. Deser, , I. Simmonds, , and R. Tomas, 2013: Atmospheric impacts of Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Climate Dyn., 43, 333344, doi:10.1007/s00382-013-1830-9.

    • Search Google Scholar
    • Export Citation
  • Seierstad, I. A., , and J. Bader, 2009: Impact of a projected future Arctic sea ice reduction on extratropical storminess and the NAO. Climate Dyn., 33, 33 93733 943, doi:10.1007/s00382-008-0463-x.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and Coauthors, 2003: A record minimum Arctic sea ice extent and area in 2002. Geophys. Res. Lett., 30, 1110, doi:10.1029/2002GL016406.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., , M. M. Holland, , and J. Stroeve, 2007: Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315, 15331536, doi:10.1126/science.1139426.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., , J. C. Fyfe, , G. M. Flato, , V. V. Kharin, , and W. J. Merryfield, 2013: Seasonal forecast skill of Arctic sea ice area in a dynamical forecast system. Geophys. Res. Lett., 40, 529534, doi:10.1002/grl.50129.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., 2015: Comparing and contrasting the behavior of Arctic and Antarctic sea ice over the 35 year period 1979–2013. Ann. Glaciol., 56, 1828, doi:10.3189/2015AoG69A909.

    • Search Google Scholar
    • Export Citation
  • Smedsrud, L. H., and Coauthors, 2013: The role of the Barents Sea in the Arctic climate system. Rev. Geophys., 51, 415449, doi:10.1002/rog.20017.

    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S. E., , D. G. Martinson, , R. C. Smith, , X. Yuan, , and D. Rind, 2008: Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and southern annular mode variability. J. Geophys. Res., 113, C03S90, doi:10.1029/2007JC004269.

    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S. E., , R. Massom, , D. Rind, , and D. Martinson, 2012: Regions of rapid sea ice change: An inter-hemispheric seasonal comparison. Geophys. Res. Lett., 39, L06501, doi:10.1029/2012GL050874.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., , L. C. Hamilton, , C. M. Bitz, , and E. Blanchard-Wrigglesworth, 2014: Predicting September sea ice: Ensemble skill of the SEARCH Sea Ice Outlook 2008–2013. Geophys. Res. Lett., 41, 24112418, doi:10.1002/2014GL059388.

    • Search Google Scholar
    • Export Citation
  • Strong, C., , G. Magnusdottir, , and H. Stern, 2009: Observed feedback between winter sea ice and the North Atlantic Oscillation. J. Climate, 22, 60216032, doi:10.1175/2009JCLI3100.1.

    • Search Google Scholar
    • Export Citation
  • Tietsche, S., and Coauthors, 2014: Seasonal to interannual Arctic sea ice predictability in current global climate models. Geophys. Res. Lett., 41, 10351043, doi:10.1002/2013GL058755.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., , and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, L., , M. Ting, , D. Chapman, , D. E. Lee, , N. Henderson, , and X. Yuan, 2015: Prediction of northern summer low-frequency circulation using a high-order vector auto-regressive model. Climate Dyn., 117, doi:10.1007/s00382-015-2607-0.

    • Search Google Scholar
    • Export Citation
  • Wang, W., , M. Chen, , and A. Kumar, 2013: Seasonal prediction of Arctic sea ice extent from a coupled dynamical forecast system. Mon. Wea. Rev., 141, 13751394, doi:10.1175/MWR-D-12-00057.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences: An Introduction. Academic Press, 467 pp.

  • Yang, X.-Y., , and X. Yuan, 2014: The early winter sea ice variability under the recent Arctic climate shift. J. Climate, 27, 5092–5110, doi:10.1175/JCLI-D-13-00536.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., , R. Lindsay, , A. Schweiger, , and M. Steele, 2013: The impact of an intense summer cyclone on 2012 Arctic sea ice retreat. Geophys. Res. Lett., 40, 720726, doi:10.1002/grl.50190.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 78 78 28
PDF Downloads 77 77 21

Predicting Summer Arctic Sea Ice Concentration Intraseasonal Variability Using a Vector Autoregressive Model

View More View Less
  • 1 Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
© Get Permissions
Restricted access

Abstract

Recent Arctic sea ice changes have important societal and economic impacts and may lead to adverse effects on the Arctic ecosystem, weather, and climate. Understanding the predictability of Arctic sea ice melting is thus an important task. A vector autoregressive (VAR) model is evaluated for predicting the summertime (May–September) daily Arctic sea ice concentration on the intraseasonal time scale, using only the daily sea ice data and without direct information of the atmosphere and ocean. The intraseasonal forecast skill of Arctic sea ice is assessed using the 1979–2012 satellite data. The cross-validated forecast skill of the VAR model is found to be superior to both the anomaly persistence and damped anomaly persistence at lead times of ~20–60 days, especially over northern Eurasian marginal seas and the Beaufort Sea. The daily forecast of ice concentration also leads to predictions of ice-free dates and September mean sea ice extent. In addition to capturing the general seasonal melt of sea ice, the model is also able to capture the interannual variability of the melting, from partial melt of the marginal sea ice in the beginning of the period to almost a complete melt in the later years. While the detailed mechanism leading to the high predictability of intraseasonal sea ice concentration needs to be further examined, the study reveals for the first time that Arctic sea ice can be predicted statistically with reasonable skill at the intraseasonal time scales given the small signal-to-noise ratio of daily data.

Denotes Open Access content.

Lamont-Doherty Earth Observatory Contribution Number 7965.

Corresponding author address: Lei Wang, Lamont-Doherty Earth Observatory, Columbia University, 61 Rt. 9W, Palisades, NY 10964. E-mail: lwang@ldeo.columbia.edu

Abstract

Recent Arctic sea ice changes have important societal and economic impacts and may lead to adverse effects on the Arctic ecosystem, weather, and climate. Understanding the predictability of Arctic sea ice melting is thus an important task. A vector autoregressive (VAR) model is evaluated for predicting the summertime (May–September) daily Arctic sea ice concentration on the intraseasonal time scale, using only the daily sea ice data and without direct information of the atmosphere and ocean. The intraseasonal forecast skill of Arctic sea ice is assessed using the 1979–2012 satellite data. The cross-validated forecast skill of the VAR model is found to be superior to both the anomaly persistence and damped anomaly persistence at lead times of ~20–60 days, especially over northern Eurasian marginal seas and the Beaufort Sea. The daily forecast of ice concentration also leads to predictions of ice-free dates and September mean sea ice extent. In addition to capturing the general seasonal melt of sea ice, the model is also able to capture the interannual variability of the melting, from partial melt of the marginal sea ice in the beginning of the period to almost a complete melt in the later years. While the detailed mechanism leading to the high predictability of intraseasonal sea ice concentration needs to be further examined, the study reveals for the first time that Arctic sea ice can be predicted statistically with reasonable skill at the intraseasonal time scales given the small signal-to-noise ratio of daily data.

Denotes Open Access content.

Lamont-Doherty Earth Observatory Contribution Number 7965.

Corresponding author address: Lei Wang, Lamont-Doherty Earth Observatory, Columbia University, 61 Rt. 9W, Palisades, NY 10964. E-mail: lwang@ldeo.columbia.edu
Save