• Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Araguás-Araguás, L., , K. Fröehlich, , and K. Rozanski, 1998: Stable isotope composition of precipitation over Southeast Asia. J. Geophys. Res., 103, 28 72128 742, doi:10.1029/98JD02582.

    • Search Google Scholar
    • Export Citation
  • Bradley, R. S., , M. Vuille, , D. Hardy, , and L. G. Thompson, 2003: Low latitude ice cores record Pacific sea surface temperatures. Geophys. Res. Lett., 30, 1174, doi:10.1029/2002GL016546.

    • Search Google Scholar
    • Export Citation
  • Breitenbach, S. F. M., , J. F. Adkins, , H. Meyer, , N. Marwan, , K. K. Kumar, , and G. H. Haug, 2010: Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth Planet. Sci. Lett., 292, 212220, doi:10.1016/j.epsl.2010.01.038.

    • Search Google Scholar
    • Export Citation
  • Brown, J., , I. Simmonds, , and D. Noone, 2006: Modeling δ18O in tropical precipitation and the surface ocean for present-day climate. J. Geophys. Res., 111, D05105, doi:10.1029/2004JD005611.

    • Search Google Scholar
    • Export Citation
  • Chae, J. H., , and S. C. Sherwood, 2010: Insights into cloud-top height and dynamics from the seasonal cycle of cloud-top heights observed by MISR in the west Pacific region. J. Atmos. Sci., 67, 248261, doi:10.1175/2009JAS3099.1.

    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., 1964: Stable isotopes in precipitation. Tellus, 16A, 436468, doi:10.1111/j.2153-3490.1964.tb00181.x.

  • Davies, R., , and M. Molloy, 2012: Global cloud height fluctuations measured by MISR on Terra from 2000 to 2010. Geophys. Res. Lett., 39, L03701, doi:10.1029/2011GL049999.

    • Search Google Scholar
    • Export Citation
  • Deshpande, R. D., , A. S. Maurya, , B. Kumar, , A. Sarkar, , and S. K. Gupta, 2010: Rain-vapor interaction and vapor source identification using stable isotopes from semiarid western India. J. Geophys. Res., 115, D23311, doi:10.1029/2010JD014458.

    • Search Google Scholar
    • Export Citation
  • Ding, H., , R. Greatbatch, , W. Park, , M. Latif, , V. Semenov, , and X. Sun, 2014: The variability of the East Asian summer monsoon and its relationship to ENSO in a partially coupled climate model. Climate Dyn., 42, 367379, doi:10.1007/s00382-012-1642-3.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., , and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, doi:10.1007/s00703-005-0125-z.

    • Search Google Scholar
    • Export Citation
  • Eastman, R., , S. G. Warren, , and C. J. Hahn, 2011: Variations in cloud cover and cloud types over the ocean from surface observations, 1954–2008. J. Climate, 24, 59145934, doi:10.1175/2011JCLI3972.1.

    • Search Google Scholar
    • Export Citation
  • Ehhalt, D. H., , F. Rohrer, , and A. Fried, 2005: Vertical profiles of HDO/H2O in the troposphere. J. Geophys. Res., 110, D13301, doi:10.1029/2004JD005569.

    • Search Google Scholar
    • Export Citation
  • Field, R. D., , D. B. A. Jones, , and D. P. Brown, 2010: Effects of postcondensation exchange on the isotopic composition of water in the atmosphere. J. Geophys. Res., 115, D24305, doi:10.1029/2010JD014334.

    • Search Google Scholar
    • Export Citation
  • Gao, J., , V. Masson-Delmotte, , T. Yao, , L. Tian, , C. Risi, , and G. Hoffmann, 2011: Precipitation water stable isotopes in the south Tibetan Plateau: Observations and modeling. J. Climate, 24, 31613178, doi:10.1175/2010JCLI3736.1.

    • Search Google Scholar
    • Export Citation
  • Gao, J., , V. Masson-Delmotte, , C. Risi, , Y. He, , and T. Yao, 2013: What controls precipitation δ18O in the southern Tibetan Plateau at seasonal and intra-seasonal scales? A case study at Lhasa and Nyalam. Tellus, 65B, 21043, doi:10.3402/tellusb.v65i0.21043.

    • Search Google Scholar
    • Export Citation
  • Gao, J., , C. Risi, , V. Masson-Delmotte, , Y. He, , and B. Xu, 2016: Southern Tibetan Plateau ice core δ18O reflects abrupt shifts in atmospheric circulation in the late 1970s. Climate Dyn., 46, 291302, doi:10.1007/s00382-015-2584-3.

    • Search Google Scholar
    • Export Citation
  • He, Y., and Coauthors, 2015: Impact of atmospheric convection on south Tibet summer precipitation isotopologue composition using a combination of in situ measurements, satellite data and atmospheric general circulation modeling. J. Geophys. Res. Atmos., 120, 38523871, doi:10.1002/2014JD022180.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, G., and Coauthors, 2003: Coherent isotope history of Andean ice cores over the last century. Geophys. Res. Lett., 30, 1179, doi:10.1029/2002GL014870.

    • Search Google Scholar
    • Export Citation
  • Ishizaki, Y., , K. Yoshimura, , S. Kanae, , M. Kimoto, , N. Kurita, , and T. Oki, 2012: Interannual variability of H2 18O in precipitation over the Asian monsoon region. J. Geophys. Res., 117, D16308, doi:10.1029/2011JD015890.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , L. Stefanova, , and V. Misra, 2013: El Niño and Southern Oscillation. Tropical Meteorology, T. N. Krishnamurti, L. Stefanova, and V. Misra, Eds., Springer, 197–220.

  • Kurita, N., 2013: Water isotopic variability in response to mesoscale convective system over the tropical ocean. J. Geophys. Res. Atmos., 118, 10 37610 390, doi:10.1002/jgrd.50754.

    • Search Google Scholar
    • Export Citation
  • Kurita, N., , D. Noone, , C. Risi, , G. A. Schmidt, , H. Yamada, , and K. Yoneyama, 2011: Intraseasonal isotopic variation associated with the Madden-Julian Oscillation. J. Geophys. Res., 116, D24101, doi:10.1029/2010JD015209.

    • Search Google Scholar
    • Export Citation
  • Lawrence, R. J., , and D. S. Gedzelman, 1996: Low stable isotope ratios of tropical cyclone rains. Geophys. Res. Lett., 23, 527530, doi:10.1029/96GL00425.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-E., , and I. Fung, 2008: “Amount effect” of water isotopes and quantitative analysis of post-condensation processes. Hydrol. Processes, 22, 18, doi:10.1002/hyp.6637.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-E., , I. Fung, , D. J. DePaolo, , and C. C. Henning, 2007: Analysis of the global distribution of water isotopes using the NCAR atmospheric general circulation model. J. Geophys. Res., 112, D16306, doi:10.1029/2006JD007657.

    • Search Google Scholar
    • Export Citation
  • Lelli, L., , A. A. Kokhanovsky, , V. V. Rozanov, , M. Vountas, , and J. P. Burrows, 2014: Linear trends in cloud top height from passive observations in the oxygen A-band. Atmos. Chem. Phys., 14, 56795692, doi:10.5194/acp-14-5679-2014.

    • Search Google Scholar
    • Export Citation
  • Li, Y., , R. Lu, , and B. Dong, 2007: The ENSO–Asian monsoon interaction in a coupled ocean–atmosphere GCM. J. Climate, 20, 51645177, doi:10.1175/JCLI4289.1.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Liu, B., , Y. Liu, , G. Wu, , J. Yan, , J. He, , and S. Ren, 2014: Asian summer monsoon onset barrier and its formation mechanism. Climate Dyn., 45, 711726, doi:10.1007/s00382-014-2296-0.

    • Search Google Scholar
    • Export Citation
  • Liu, X., , and D. S. Battisti, 2015: The influence of orbital forcing of tropical insolation on the climate and isotopic composition of precipitation in South America. J. Climate, 28, 48414862, doi:10.1175/JCLI-D-14-00639.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., and Coauthors, 2014: Chinese cave records and the East Asia summer monsoon. Quat. Sci. Rev., 83, 115128, doi:10.1016/j.quascirev.2013.10.021.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., , H. Wang, , R. Zhang, , W. Qian, , and Z. Luo, 2013: Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over south China and the Yangtze and Huai River basin. J. Climate, 26, 110132, doi:10.1175/JCLI-D-12-00100.1.

    • Search Google Scholar
    • Export Citation
  • Maher, B. A., , and R. Thompson, 2012: Oxygen isotopes from Chinese caves: Records not of monsoon rainfall but of circulation regime. J. Quat. Sci., 27, 615624, doi:10.1002/jqs.2553.

    • Search Google Scholar
    • Export Citation
  • McCarroll, D., , and N. J. Loader, 2004: Stable isotopes in tree rings. Quat. Sci. Rev., 23, 771801, doi:10.1016/j.quascirev.2003.06.017.

    • Search Google Scholar
    • Export Citation
  • Moore, M., , Z. Kuang, , and P. N. Blossey, 2014: A moisture budget perspective of the amount effect. Geophys. Res. Lett., 41, 13291335, doi:10.1002/2013GL058302.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 2005: Trends in upper-level cloud cover and surface divergence over the tropical Indo-Pacific Ocean between 1952 and 1997. J. Geophys. Res., 110, D21110, doi:10.1029/2005JD006183.

    • Search Google Scholar
    • Export Citation
  • Pang, H., , S. Hou, , S. Kaspari, , and P. A. Mayewski, 2014: Influence of regional precipitation patterns on stable isotopes in ice cores from the central Himalayas. Cryosphere, 8, 289301, doi:10.5194/tc-8-289-2014.

    • Search Google Scholar
    • Export Citation
  • Pausata, F. S. R., , D. S. Battisti, , K. H. Nisancioglu, , and C. M. Bitz, 2011: Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nat. Geosci., 4, 474480, doi:10.1038/ngeo1169.

    • Search Google Scholar
    • Export Citation
  • Peng, T.-R., , C.-H. Wang, , C.-C. Huang, , L.-Y. Fei, , C.-T. A. Chen, , and J.-L. Hwong, 2010: Stable isotopic characteristic of Taiwan’s precipitation: A case study of western Pacific monsoon region. Earth Planet. Sci. Lett., 289, 357366, doi:10.1016/j.epsl.2009.11.024.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., , and J. M. Wallace, 1983: Meteorological aspects of the El Niño/Southern Oscillation. Science, 222, 11951202, doi:10.1126/science.222.4629.1195.

    • Search Google Scholar
    • Export Citation
  • Risi, C., , S. Bony, , and F. Vimeux, 2008a: Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J. Geophys. Res., 113, D19306, doi:10.1029/2008JD009943.

    • Search Google Scholar
    • Export Citation
  • Risi, C., , S. Bony, , F. Vimeux, , L. Descroix, , B. Ibrahim, , E. Lebreton, , I. Mamadou, , and B. Sultan, 2008b: What controls the isotopic composition of the African monsoon precipitation? Insights from event-based precipitation collected during the 2006 AMMA field campaign. Geophys. Res. Lett., 35, L24808, doi:10.1029/2008GL035920.

    • Search Google Scholar
    • Export Citation
  • Risi, C., , S. Bony, , F. Vimeux, , M. Chong, , and L. Descroix, 2010: Evolution of the stable water isotopic composition of the rain sampled along Sahelian squall lines. Quart. J. Roy. Meteor. Soc., 136, 227242, doi:10.1002/qj.485.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., , and P. D. Jones, 1987: An extension of the Tahiti–Darwin Southern Oscillation index. Mon. Wea. Rev., 115, 21612165, doi:10.1175/1520-0493(1987)115<2161:AEOTTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rozanski, K., , L. Araguás-Araguás, , and R. Gonfiantini, 1993: Isotopic patterns in modern global precipitation. Climate Change in Continental Isotopic Records, P. K. Swart et al., Eds., Amer. Geophys. Union, 1–36.

  • Samuels-Crow, K. E., , J. Galewsky, , D. R. Hardy, , Z. D. Sharp, , J. Worden, , and C. Braun, 2014: Upwind convective influences on the isotopic composition of atmospheric water vapor over the tropical Andes. J. Geophys. Res. Atmos., 119, 70517063, doi:10.1002/2014JD021487.

    • Search Google Scholar
    • Export Citation
  • Scholl, M. A., , J. B. Shanley, , J. P. Zegarra, , and T. B. Coplen, 2009: The stable isotope amount effect: New insights from NEXRAD echo tops, Luquillo Mountains, Puerto Rico. Water Resour. Res., 45, W12407, doi:10.1029/2008WR007515.

    • Search Google Scholar
    • Export Citation
  • Shi, C., and Coauthors, 2011: Sampling strategy and climatic implications of tree-ring stable isotopes on the southeast Tibetan Plateau. Earth Planet. Sci. Lett., 301, 307316, doi:10.1016/j.epsl.2010.11.014.

    • Search Google Scholar
    • Export Citation
  • Su, H., , and J. H. Jiang, 2013: Tropical clouds and circulation changes during the 2006/07 and 2009/10 El Niños. J. Climate, 26, 399413, doi:10.1175/JCLI-D-12-00152.1.

    • Search Google Scholar
    • Export Citation
  • Tan, M., 2014: Circulation effect: Response of precipitation δ18O to the ENSO cycle in monsoon regions of China. Climate Dyn., 42, 10671077, doi:10.1007/s00382-013-1732-x.

    • Search Google Scholar
    • Export Citation
  • Tao, S. Y., , and L. X. Chen, 1987: A review of recent research on the East Asian Summer Monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.

  • Thompson, L. G., , T. Yao, , E. Mosley-Thompson, , M. E. Davis, , K. A. Henderson, , and P. N. Lin, 2000: A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores. Science, 289, 19161919, doi:10.1126/science.289.5486.1916.

    • Search Google Scholar
    • Export Citation
  • Thompson, L. G., , E. Mosley-Thompson, , M. E. Davis, , V. S. Zagorodnov, , I. M. Howat, , V. N. Mikhalenko, , and P.-N. Lin, 2013: Annually resolved ice core records of tropical climate variability over the past ~1800 years. Science, 340, 945950, doi:10.1126/science.1234210.

    • Search Google Scholar
    • Export Citation
  • Tian, L., , V. Masson-Delmotte, , M. Stievenard, , T. Yao, , and J. Jouzel, 2001a: Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J. Geophys. Res., 106, 28 08128 088, doi:10.1029/2001JD900186.

    • Search Google Scholar
    • Export Citation
  • Tian, L., , T. Yao, , A. Numaguti, , and W. Sun, 2001b: Stable isotope variations in monsoon precipitation on the Tibetan Plateau. J. Meteor. Soc. Japan, 79, 959966, doi:10.2151/jmsj.79.959.

    • Search Google Scholar
    • Export Citation
  • Tian, L., , T. Yao, , P. F. Schuster, , J. W. C. White, , K. Ichiyanagi, , E. Pendall, , J. Pu, , and W. Yu, 2003: Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau. J. Geophys. Res., 108, 4293, doi:10.1029/2002JD002173.

    • Search Google Scholar
    • Export Citation
  • Vuille, M., , R. S. Bradley, , M. Werner, , R. Healy, , and F. Keimig, 2003: Modeling δ18O in precipitation over the tropical Americas: 1. Interannual variability and climatic controls. J. Geophys. Res., 108, 4174, doi:10.1029/2001JD002038.

    • Search Google Scholar
    • Export Citation
  • Vuille, M., , M. Werner, , R. S. Bradley, , and F. Keimig, 2005: Stable isotopes in precipitation in the Asian monsoon region. J. Geophys. Res., 110, D23108, doi:10.1029/2005JD006022.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and LinHo, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386398, doi:10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, N., , L. G. Thompson, , M. E. Davis, , E. Mosley-Thompson, , Y. Tandong, , and P. Jianchen, 2003: Influence of variations in NAO and SO on air temperature over the northern Tibetan Plateau as recorded by δ18O in the Malan ice core. Geophys. Res. Lett., 30, 2167, doi:10.1029/2003GL018188.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , and C. Wang, 2016: Features of clouds and convection during the pre- and post-onset periods of the Asian summer monsoon. Theor. Appl. Climatol., 123, 551564, doi:10.1007/s00704-015-1372-7.

    • Search Google Scholar
    • Export Citation
  • Wang, Y. J., , H. Cheng, , R. L. Edwards, , Z. S. An, , J. Y. Wu, , C. C. Shen, , and J. A. Dorale, 2001: A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science, 294, 23452348, doi:10.1126/science.1064618.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, doi:10.1002/qj.49711850705.

    • Search Google Scholar
    • Export Citation
  • Worden, J., and Coauthors, 2006: Tropospheric emission spectrometer observations of the tropospheric HDO/H2O ratio: Estimation approach and characterization. J. Geophys. Res., 111, D16309, doi:10.1029/2005JD006606.

    • Search Google Scholar
    • Export Citation
  • Worden, J., and Coauthors, 2011: Estimate of bias in Aura TES HDO/H2O profiles from comparison of TES and in situ HDO/H2O measurements at the Mauna Loa observatory. Atmos. Chem. Phys., 11, 44914503, doi:10.5194/acp-11-4491-2011.

    • Search Google Scholar
    • Export Citation
  • Wu, H., , X. Zhang, , L. Xiaoyan, , G. Li, , and Y. Huang, 2015: Seasonal variations of deuterium and oxygen-18 isotopes and their response to moisture source for precipitation events in the subtropical monsoon region. Hydrol. Processes, 29, 90102, doi:10.1002/hyp.10132.

    • Search Google Scholar
    • Export Citation
  • Xie, L., , G. Wei, , W. Deng, , and X. Zhao, 2011: Daily δ18O and δD of precipitations from 2007 to 2009 in Guangzhou, South China: Implications for changes of moisture sources. J. Hydrol., 400, 477489, doi:10.1016/j.jhydrol.2011.02.002.

    • Search Google Scholar
    • Export Citation
  • Yang, M., , T. Yao, , Y. He, , and L. Thompson, 2000: ENSO events recorded in the Guliya ice core. Climatic Change, 47, 401409, doi:10.1023/A:1005696702385.

    • Search Google Scholar
    • Export Citation
  • Yang, X., , T. Yao, , W. Yang, , W. Yu, , and D. Qu, 2011: Co-existence of temperature and amount effects on precipitation δ18O in the Asian monsoon region. Geophys. Res. Lett., 38, L21809, doi:10.1029/2011GL049353.

    • Search Google Scholar
    • Export Citation
  • Yang, X., , T. Yao, , W. Yang, , B. Xu, , Y. He, , and D. Qu, 2012: Isotopic signal of earlier summer monsoon onset in the Bay of Bengal. J. Climate, 25, 25092516, doi:10.1175/JCLI-D-11-00180.1.

    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2013: A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Rev. Geophys., 51, 525548, doi:10.1002/rog.20023.

    • Search Google Scholar
    • Export Citation
  • Yu, W., , T. Yao, , L. Tian, , Y. Ma, , K. Ichiyanagi, , Y. Wang, , and W. Sun, 2008: Relationships between δ18O in precipitation and air temperature and moisture origin on a south–north transect of the Tibetan Plateau. Atmos. Res., 87, 158169, doi:10.1016/j.atmosres.2007.08.004.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 96 96 25
PDF Downloads 67 67 25

Atmospheric Controls on Seasonal and Interannual Variations in the Precipitation Isotope in the East Asian Monsoon Region

View More View Less
  • 1 Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
  • 2 Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, and CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
© Get Permissions
Restricted access

ABSTRACT

Understanding variations in isotopic composition of precipitation from monsoon regions is crucial for its utilization in paleoclimate studies. This study explores the relationship between precipitation δ18O data for the East Asian monsoon (EAM) region archived in Global Network for Isotopes in Precipitation (GNIP) and the cloud data archived in ISCCP and their linkage with large-scale atmospheric circulation patterns. Results show that precipitation δ18O are significantly and positively correlated with cloud-top pressure (CTP) on both local and regional scales. Mechanically speaking, the stronger the monsoon convection precipitation, the higher the cloud and the lower the condensation temperature and thus the lower the precipitation δ18O. This result implies that the sharp drop in precipitation δ18O in the early summer in monsoonal Asia is related to the atmospheric circulation pattern rather than the different moisture sources, as was previously assumed. This result helps explain the processes leading to the observed “amount effect.” A comparison of atmospheric circulation patterns with precipitation δ18O on an interannual scale shows that the positive CTP anomalies in the central Indo-Pacific within the weak Walker circulation (El Niño) can be associated with positive δ18O anomalies, while negative CTP anomalies in the central Indo-Pacific within the strong Walker circulation (La Niña) can be linked to negative δ18O anomalies. This result further confirms the aforementioned conclusion. This is important for understanding paleoclimatic change in monsoonal Asia, as interannual variations in stable isotopes in that region have received less attention in the past.

Corresponding author address: Lide Tian, Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing 100101, China. E-mail: ldt@itpcas.ac.cn

ABSTRACT

Understanding variations in isotopic composition of precipitation from monsoon regions is crucial for its utilization in paleoclimate studies. This study explores the relationship between precipitation δ18O data for the East Asian monsoon (EAM) region archived in Global Network for Isotopes in Precipitation (GNIP) and the cloud data archived in ISCCP and their linkage with large-scale atmospheric circulation patterns. Results show that precipitation δ18O are significantly and positively correlated with cloud-top pressure (CTP) on both local and regional scales. Mechanically speaking, the stronger the monsoon convection precipitation, the higher the cloud and the lower the condensation temperature and thus the lower the precipitation δ18O. This result implies that the sharp drop in precipitation δ18O in the early summer in monsoonal Asia is related to the atmospheric circulation pattern rather than the different moisture sources, as was previously assumed. This result helps explain the processes leading to the observed “amount effect.” A comparison of atmospheric circulation patterns with precipitation δ18O on an interannual scale shows that the positive CTP anomalies in the central Indo-Pacific within the weak Walker circulation (El Niño) can be associated with positive δ18O anomalies, while negative CTP anomalies in the central Indo-Pacific within the strong Walker circulation (La Niña) can be linked to negative δ18O anomalies. This result further confirms the aforementioned conclusion. This is important for understanding paleoclimatic change in monsoonal Asia, as interannual variations in stable isotopes in that region have received less attention in the past.

Corresponding author address: Lide Tian, Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lin Cui Road, Chaoyang District, Beijing 100101, China. E-mail: ldt@itpcas.ac.cn
Save