• Abatzoglou, J. T., 2013: Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol., 33, 121131, doi:10.1002/joc.3413.

    • Search Google Scholar
    • Export Citation
  • Abatzoglou, J. T., , and T. J. Brown, 2012: A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatol., 32, 772780, doi:10.1002/joc.2312.

    • Search Google Scholar
    • Export Citation
  • Allen, R. G., , L. S. Pereira, , D. Raes, , and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp. [Available online at http://www.fao.org/docrep/x0490e/x0490e00.htm.]

  • Alley, W. M., 1984: The Palmer Drought Severity Index: Limitations and assumptions. J. Climate Appl. Meteor., 23, 11001109, doi:10.1175/1520-0450(1984)023<1100:TPDSIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ault, T. R., , J. E. Cole, , J. T. Overpeck, , G. T. Pederson, , and D. M. Meko, 2014: Assessing the risk of persistent drought using climate model simulations and paleoclimate data. J. Climate, 27, 75297549, doi:10.1175/JCLI-D-12-00282.1.

    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 65, 11701185, doi:10.1175/1520-0477(1984)065<1170:TERBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, C., , J. C. H. Chiang, , C.-W. Lan, , C.-H. Chung, , Y.-C. Liao, , and C.-J. Lee, 2013: Increase in the range between wet and dry season precipitation. Nat. Geosci., 6, 263267, doi:10.1038/ngeo1744.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., , F. Boberg, , O. B. Christensen, , and P. Lucas-Picher, 2008: On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett., 35, L20709, doi:10.1029/2008GL035694.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., , J. Smerdon, , R. Seager, , and S. Coats, 2014: Global warming and 21st century drying. Climate Dyn., 43, 26072627, doi:10.1007/s00382-014-2075-y.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., , T. R. Ault, , and J. E. Smerdon, 2015: Unprecedented 21st century drought risk in the American Southwest and central Plains. Sci. Adv., 1, e1400082, doi:10.1126/sciadv.1400082.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., , D. M. Meko, , D. W. Stahle, , and M. K. Cleaveland, 1999: Drought reconstructions for the continental United States. J. Climate, 12, 11451162, doi:10.1175/1520-0442(1999)012<1145:DRFTCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cook, E. R., , C. A. Woodhouse, , C. M. Eakin, , D. M. Meko, , and D. W. Stahle, 2004: Long-term aridity changes in the western United States. Science, 306, 10151018, doi:10.1126/science.1102586.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011: Characteristics and trends in various forms of the Palmer drought severity index during 1900–2008. J. Geophys. Res., 116, D12115, doi:10.1029/2010JD015541.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, doi:10.1038/nclimate1633.

    • Search Google Scholar
    • Export Citation
  • Daly, C., , M. Halbleib, , J. I. Smith, , W. P. Gibson, , M. K. Doggett, , G. H. Taylor, , J. Curtis, , and P. P. Pasteris, 2008: Physiographically sensitivity mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, doi:10.1002/joc.1688.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., , D. L. Swain, , and D. Touma, 2015: Anthropogenic warming has increased drought risk in California. Proc. Natl. Acad. Sci. USA, 112, 39313936, doi:10.1073/pnas.1422385112.

    • Search Google Scholar
    • Export Citation
  • Donohue, R. J., , M. L. Roderick, , T. R. McVicar, , and G. D. Farquhar, 2013: Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett., 40, 30313035, doi:10.1002/grl.50563.

    • Search Google Scholar
    • Export Citation
  • Ehret, U., , E. Zehe, , V. Wulfmeyer, , K. Warrach-Sagi, , and J. Liebert, 2012: Should we apply bias correction to global and regional climate model data? Hydrol. Earth Syst. Sci., 16, 33913404, doi:10.5194/hess-16-3391-2012.

    • Search Google Scholar
    • Export Citation
  • Feng, S., , and Q. Fu, 2013: Expansion of global drylands under a warming climate. Atmos. Chem. Phys., 13, 10 08110 094, doi:10.5194/acp-13-10081-2013.

    • Search Google Scholar
    • Export Citation
  • Ficklin, D. L., , Y. Luo, , E. Luedeling, , and M. Zhang, 2009: Climate change sensitivity assessment of a highly agricultural watershed using SWAT. J. Hydrol., 374, 1629, doi:10.1016/j.jhydrol.2009.05.016.

    • Search Google Scholar
    • Export Citation
  • Ficklin, D. L., , S. L. Letsinger, , H. Gholizadeh, , and J. T. Maxwell, 2015a: Incorporation of the Penman–Monteith potential evapotranspiration method into a Palmer drought severity index tool. Comput. Geosci., 85, 136141, doi:10.1016/j.cageo.2015.09.013.

    • Search Google Scholar
    • Export Citation
  • Ficklin, D. L., , J. T. Maxwell, , S. L. Letsinger, , and H. Gholizadeh, 2015b: A climatic deconstruction of recent drought trends in the United States. Environ. Res. Lett., 10, 044009, doi:10.1088/1748-9326/10/4/044009.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., , S. Blenkinsop, , and C. Tebaldi, 2007: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 15471578, doi:10.1002/joc.1556.

    • Search Google Scholar
    • Export Citation
  • Geil, K. L., , Y. L. Serra, , and X. Zeng, 2013: Assessment of CMIP5 model simulations of the North American monsoon system. J. Climate, 26, 87878801, doi:10.1175/JCLI-D-13-00044.1.

    • Search Google Scholar
    • Export Citation
  • Girvetz, E., , and C. Zganjar, 2014: Dissecting indices of aridity for assessing the impacts of global climate change. Climatic Change, 126, 469483, doi:10.1007/s10584-014-1218-9.

    • Search Google Scholar
    • Export Citation
  • Glotter, M., , J. Elliott, , D. McInerney, , N. Best, , I. Foster, , and E. J. Moyer, 2014: Evaluating the utility of dynamical downscaling in agricultural impacts projections. Proc. Natl. Acad. Sci. USA, 111, 87768781, doi:10.1073/pnas.1314787111.

    • Search Google Scholar
    • Export Citation
  • Griffin, D., , and K. J. Anchukaitis, 2014: How unusual is the 2012–2014 California drought? Geophys. Res. Lett., 41, 90179023, doi:10.1002/2014GL062433.

    • Search Google Scholar
    • Export Citation
  • Hagemann, S., , C. Chen, , J. O. Haerter, , J. Heinke, , D. Gerten, , and C. Piani, 2011: Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. J. Hydrometeor., 12, 556578, doi:10.1175/2011JHM1336.1.

    • Search Google Scholar
    • Export Citation
  • Herweijer, C., , and R. Seager, 2008: The global footprint of persistent extra-tropical drought in the instrumental era. Int. J. Climatol., 28, 17611774, doi:10.1002/joc.1590.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M., , J. Eischeid, , A. Kumar, , R. Leung, , A. Mariotti, , K. Mo, , S. Schubert, , and R. Seager, 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, doi:10.1175/BAMS-D-13-00055.1.

    • Search Google Scholar
    • Export Citation
  • Huang, J., , H. Yu, , X. Guan, , G. Wang, , and R. Guo, 2016: Accelerated dryland expansion under climate change. Nat. Climate Change, doi:10.1038/nclimate2837, in press.

    • Search Google Scholar
    • Export Citation
  • Hulme, M., 1996: Recent climatic change in the world’s drylands. Geophys. Res. Lett., 23, 6164, doi:10.1029/95GL03586.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

  • Johnson, F., , and A. Sharma, 2010: A comparison of Australian open water body evaporation trends for current and future climates estimated from Class A evaporation pans and general circulation models. J. Hydrometeor., 11, 105121, doi:10.1175/2009JHM1158.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, F., , and A. Sharma, 2015: What are the impacts of bias correction on future drought projections? J. Hydrol., 525, 472485, doi:10.1016/j.jhydrol.2015.04.002.

    • Search Google Scholar
    • Export Citation
  • Karl, T., , and R. W. Knight, 1985: Atlas of Monthly Palmer Hydrological Drought Indices (1931–1983) for the Contiguous United States. National Climatic Data Center, 319 pp.

  • Kumar, D., , V. Mishra, , and A. R. Ganguly, 2015: Evaluating wind extremes in CMIP5 climate models. Climate Dyn., 45, 441453, doi:10.1007/s00382-014-2306-2.

    • Search Google Scholar
    • Export Citation
  • Li, C., , E. Sinha, , D. E. Horton, , N. S. Diffenbaugh, , and A. M. Michalak, 2014: Joint bias correction of temperature and precipitation in climate model simulations. J. Geophys. Res. Atmos., 119, 13 15313 162, doi:10.1002/2014JD022514.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., , and H. G. Hidalgo, 2008: Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling methods. Hydrol. Earth Syst. Sci., 12, 551563, doi:10.5194/hess-12-551-2008.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., , and D. W. Pierce, 2014: Bias correction can modify climate model simulated precipitation changes without adverse effect on the ensemble mean. Hydrol. Earth Syst. Sci., 18, 915925, doi:10.5194/hess-18-915-2014.

    • Search Google Scholar
    • Export Citation
  • Mehran, A., , A. AghaKouchak, , and T. J. Phillips, 2014: Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. J. Geophys. Res. Atmos., 119, 16951707, doi:10.1002/2013JD021152.

    • Search Google Scholar
    • Export Citation
  • Muerth, M. J., and Coauthors, 2013: On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff. Hydrol. Earth Syst. Sci., 17, 11891204, doi:10.5194/hess-17-1189-2013.

    • Search Google Scholar
    • Export Citation
  • Nasrollahi, N., , A. AghaKouchak, , L. Cheng, , L. Damberg, , T. J. Phillips, , C. Miao, , K. Hsu, , and S. Sorooshian, 2015: How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts? Water Resour. Res., 51, 28472864, doi:10.1002/2014WR016318.

    • Search Google Scholar
    • Export Citation
  • Overpeck, J., , and B. Udall, 2010: Dry times ahead. Science, 328, 16421643, doi:10.1126/science.1186591.

  • Palmer, W., 1965: Meteorological drought. U.S. Dept. of Commerce Weather Bureau Research Paper 45, 58 pp.

  • Pierce, D. W., , D. R. Cayan, , E. P. Maurer, , J. T. Abatzoglou, , and K. C. Hegewisch, 2015: Improved bias correction techniques for hydrological simulations of climate change. J. Hydrometeor., 16, 24212442, doi:10.1175/JHM-D-14-0236.1.

    • Search Google Scholar
    • Export Citation
  • Polade, S. D., , A. Gershunov, , D. R. Cayan, , M. D. Dettinger, , and D. W. Pierce, 2013: Natural climate variability and teleconnections to precipitation over the Pacific–North American region in CMIP3 and CMIP5 models. Geophys. Res. Lett., 40, 22962301, doi:10.1002/grl.50491.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662.

  • Robeson, S. M., 2015: Revisiting the recent California drought as an extreme value. Geophys. Res. Lett., 42, 67716779, doi:10.1002/2015GL064593.

    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., , P. Greve, , and G. D. Farquhar, 2015: On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res., 51, 54505463, doi:10.1002/2015WR017031.

    • Search Google Scholar
    • Export Citation
  • Rupp, D. E., , P. Mote, , N. Massey, , C. J. Rye, , R. Jones, , and M. R. Allen, 2012: Did human influence on climate make the 2011 Texas drought more probable? Bull. Amer. Meteor. Soc., 93, 10521054, doi:10.1175/BAMS-D-12-00021.1.

    • Search Google Scholar
    • Export Citation
  • Rupp, D. E., , J. T. Abatzoglou, , K. C. Hegewisch, , and P. W. Mote, 2013: Evaluation of CMIP5 20th century climate simulations for the Pacific Northwest USA. J. Geophys. Res. Atmos., 118, 10 88410 906, doi:10.1002/jgrd.50843.

    • Search Google Scholar
    • Export Citation
  • Scheff, J., , and D. M. W. Frierson, 2014: Scaling potential evapotranspiration with greenhouse warming. J. Climate, 27, 15391558, doi:10.1175/JCLI-D-13-00233.1.

    • Search Google Scholar
    • Export Citation
  • Scheff, J., , and D. M. W. Frierson, 2015: Terrestrial aridity and its response to greenhouse warming across CMIP5 climate models. J. Climate, 28, 55835600, doi:10.1175/JCLI-D-14-00480.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , and G. A. Vecchi, 2010: Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proc. Natl. Acad. Sci. USA, 107, 21 27721 282, doi:10.1073/pnas.0910856107.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , and M. Hoerling, 2014: Atmosphere and ocean origins of North American droughts. J. Climate, 27, 45814606, doi:10.1175/JCLI-D-13-00329.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 11811184, doi:10.1126/science.1139601.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , and E. F. Wood, 2008: Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J. Climate, 21, 432458, doi:10.1175/2007JCLI1822.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., , E. F. Wood, , and M. L. Roderick, 2012: Little change in global drought over the past 60 years. Nature, 491, 435438, doi:10.1038/nature11575.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Coauthors, 2013a: North American climate in CMIP5 Experiments. Part I: Evaluation of historical simulations of continental and regional climatology. J. Climate, 26, 92099245, doi:10.1175/JCLI-D-12-00592.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Coauthors, 2013b: North American climate in CMIP5 Experiments. Part II: Evaluation of historical simulations of intraseasonal to decadal variability. J. Climate, 26, 92479290, doi:10.1175/JCLI-D-12-00593.1.

    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., , S. Beguería, , and J. I. López-Moreno, 2010: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23, 16961718, doi:10.1175/2009JCLI2909.1.

    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., and Coauthors, 2014: Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ. Res. Lett., 9, 044001, doi:10.1088/1748-9326/9/4/044001.

    • Search Google Scholar
    • Export Citation
  • Werick, W. J., , G. E. Willeke, , N. B. Guttman, , J. R. M. Hosking, , and J. R. Wallis, 1994: National drought atlas developed. Eos, Trans. Amer. Geophys. Union, 75, 8990, doi:10.1029/94EO00706.

    • Search Google Scholar
    • Export Citation
  • Williams, A. P., , R. Seager, , J. T. Abatzoglou, , B. I. Cook, , J. E. Smerdon, , and E. R. Cook, 2015: Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett., 42, 68196828, doi:10.1002/2015GL064924.

    • Search Google Scholar
    • Export Citation
  • Woodhouse, C. A., , and J. T. Overpeck, 1998: 2000 years of drought variability in the central United States. Bull. Amer. Meteor. Soc., 79, 26932714, doi:10.1175/1520-0477(1998)079<2693:YODVIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woodhouse, C. A., , D. M. Meko, , G. M. MacDonald, , D. W. Stahle, , and E. R. Cook, 2010: A 1,200-year perspective of 21st century drought in southwestern North America. Proc. Natl. Acad. Sci. USA, 107, 21 28321 288, doi:10.1073/pnas.0911197107.

    • Search Google Scholar
    • Export Citation
  • Zhao, T., , and A. Dai, 2015: The magnitude and causes of global drought changes in the twenty-first century under a low–moderate emissions scenario. J. Climate, 28, 44904512, doi:10.1175/JCLI-D-14-00363.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 81 81 26
PDF Downloads 82 82 27

The Influence of Climate Model Biases on Projections of Aridity and Drought

View More View Less
  • 1 Department of Geography, Indiana University, Bloomington, Indiana
  • 2 Department of Geography, University of Idaho, Moscow, Idaho
  • 3 Department of Geography, Indiana University, Bloomington, Indiana
  • 4 Geological Sciences, Indiana University, Bloomington, Indiana
© Get Permissions
Restricted access

Abstract

Global climate models (GCMs) have biases when simulating historical climate conditions, which in turn have implications for estimating the hydrological impacts of climate change. This study examines the differences in projected changes of aridity [defined as the ratio of precipitation (P) over potential evapotranspiration (PET), or P/PET] and the Palmer drought severity index (PDSI) between raw and bias-corrected GCM output for the continental United States (CONUS). For historical simulations (1950–79) the raw GCM ensemble median has a positive precipitation bias (+24%) and negative PET bias (−7%) compared to the bias-corrected output when averaged over CONUS with the most acute biases over the interior western United States. While both raw and bias-corrected GCM ensembles project more aridity (lower P/PET) for CONUS in the late twenty-first century (2070–99), relative enhancements in aridity were found for bias-corrected data compared to the raw GCM ensemble owing to positive precipitation and negative PET biases in the raw GCM ensemble. However, the bias-corrected GCM ensemble projects less acute decreases in summer PDSI for the southwestern United States compared to the raw GCM ensemble (from 1 to 2 PDSI units higher), stemming from biases in precipitation amount and seasonality in the raw GCM ensemble. Compared to the raw GCM ensemble, bias-corrected GCM inputs not only correct for systematic errors but also can produce high-resolution projections that are useful for impact analyses. Therefore, changes in hydroclimate metrics often appear considerably different in bias-corrected output compared to raw GCM output.

Corresponding author address: Darren L. Ficklin, Department of Geography, Indiana University, 701. E. Kirkwood Ave., Bloomington, IN 47405. E-mail: dficklin@indiana.edu

Abstract

Global climate models (GCMs) have biases when simulating historical climate conditions, which in turn have implications for estimating the hydrological impacts of climate change. This study examines the differences in projected changes of aridity [defined as the ratio of precipitation (P) over potential evapotranspiration (PET), or P/PET] and the Palmer drought severity index (PDSI) between raw and bias-corrected GCM output for the continental United States (CONUS). For historical simulations (1950–79) the raw GCM ensemble median has a positive precipitation bias (+24%) and negative PET bias (−7%) compared to the bias-corrected output when averaged over CONUS with the most acute biases over the interior western United States. While both raw and bias-corrected GCM ensembles project more aridity (lower P/PET) for CONUS in the late twenty-first century (2070–99), relative enhancements in aridity were found for bias-corrected data compared to the raw GCM ensemble owing to positive precipitation and negative PET biases in the raw GCM ensemble. However, the bias-corrected GCM ensemble projects less acute decreases in summer PDSI for the southwestern United States compared to the raw GCM ensemble (from 1 to 2 PDSI units higher), stemming from biases in precipitation amount and seasonality in the raw GCM ensemble. Compared to the raw GCM ensemble, bias-corrected GCM inputs not only correct for systematic errors but also can produce high-resolution projections that are useful for impact analyses. Therefore, changes in hydroclimate metrics often appear considerably different in bias-corrected output compared to raw GCM output.

Corresponding author address: Darren L. Ficklin, Department of Geography, Indiana University, 701. E. Kirkwood Ave., Bloomington, IN 47405. E-mail: dficklin@indiana.edu
Save