• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., , I. Bladé, , M. Newman, , J. R. Lanzante, , N.-C. Lau, , and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., , R. A. Locarnini, , T. P. Boyer, , A. V. Mishonov, , and H. E. Garcia, 2006: Salinity. Vol. 2, World Ocean Atlas 2005, NOAA Atlas NESDIS 62, 182 pp.

  • Bell, R., , K. Hodges, , P. L. Vidale, , J. Strachan, , and M. Roberts, 2014: Simulation of the global ENSO–tropical cyclone teleconnection by a high-resolution coupled general circulation model. J. Climate, 27, 64046422, doi:10.1175/JCLI-D-13-00559.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006, doi:10.1175/JCLI3457.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , A. G. Barnston, , and S. E. Zebiak, 2005: A statistical assessment of tropical cyclone activity in atmospheric general circulation models. Tellus, 57A, 589604, doi:10.1111/j.1600-0870.2005.00117.x.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , A. W. Robertson, , S. J. Gaffney, , P. Smyth, , and M. Ghil, 2007: Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J. Climate, 20, 36543676, doi:10.1175/JCLI4203.1.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., , and S. E. Zebiak, 1985: A theory for El Niño and the Southern Oscillation. Science, 228, 10851087, doi:10.1126/science.228.4703.1085.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 1985: Tropical cyclone activity in the northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon. Mon. Wea. Rev., 113, 599606, doi:10.1175/1520-0493(1985)113<0599:TCAITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 29602972, doi:10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2008: Decadal variations of intense typhoon occurrence in the western North Pacific. Proc. Roy. Soc., 464A, 249272, doi:10.1098/rspa.2007.0183.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., , and X. Liang, 2003: Convective asymmetries associated with tropical cyclone landfall. Part I: f-plane simulations. J. Atmos. Sci., 60, 15601576, doi:10.1175/1520-0469(2003)60<1560:CAAWTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., , and K. S. Liu, 2004: Global warming and western North Pacific typhoon activity from an observational perspective. J. Climate, 17, 45904602, doi:10.1175/3240.1.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., , and M. Xu, 2009: Interannual and inter-decadal variations of landfalling tropical cyclones in East Asia. Part I: Time series analysis. Int. J. Climatol., 29, 12851293.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., , Y. H. Duan, , and L. K. Shay, 2001: Tropical cyclone intensity change from a simple ocean–atmosphere coupled model. J. Atmos. Sci., 58, 154172, doi:10.1175/1520-0469(2001)058<0154:TCICFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , and C.-Y. Tam, 2010: Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys. Res. Lett., 37, L01803, doi:10.1029/2009GL041708.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., , and S.-J. Lin, 2011: The remarkable predictability of interannual variability of Atlantic hurricanes during the past decade. Geophys. Res. Lett., 38, L11804, doi:10.1029/2011GL047629.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., , and S.-J. Lin, 2013: Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model. J. Climate, 26, 380398, doi:10.1175/JCLI-D-12-00061.1.

    • Search Google Scholar
    • Export Citation
  • Chia, H. H., , and C. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 29342944, doi:10.1175/1520-0442(2002)015<2934:TIVITG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., , and B. R. Lintner, 2005: Mechanisms of remote tropical surface warming during El Niño. J. Climate, 18, 41304149, doi:10.1175/JCLI3529.1.

    • Search Google Scholar
    • Export Citation
  • Dawson, A., , A. J. Matthews, , D. P. Stevens, , M. J. Roberts, , and P. L. Vidale, 2013: Importance of oceanic resolution and mean state on the extra-tropical response to El Niño in a matrix of coupled models. Climate Dyn., 41, 14391452, doi:10.1007/s00382-012-1518-6.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, doi:10.1175/JCLI-D-11-00316.1.

    • Search Google Scholar
    • Export Citation
  • Dobos, P. H., , and R. L. Elsberry, 1993: Forecasting tropical cyclone recurvature. Part I: Evaluation of existing methods. Mon. Wea. Rev., 121, 12731278, doi:10.1175/1520-0493(1993)121<1273:FTCRPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS 11, 47 pp.

  • Emanuel, K., 2005: Divine Wind: The History and Science of Hurricanes. Oxford University Press, 296 pp.

  • Emanuel, K., , C. DesAutels, , C. Holloway, , and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, doi:10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fraedrich, K., , and L. M. Leslie, 1989: Estimates of cyclone track predictability. I: Tropical cyclones in the Australian region. Quart. J. Roy. Meteor. Soc., 115, 7992, doi:10.1002/qj.49711548505.

    • Search Google Scholar
    • Export Citation
  • Fu, B., , M. S. Peng, , T. Li, , and D. E. Stevens, 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part II: Western North Pacific. Mon. Wea. Rev., 140, 10671080, doi:10.1175/2011MWR3618.1.

    • Search Google Scholar
    • Export Citation
  • Fudeyasu, H., , S. Iizuka, , and T. Matsuura, 2006: Impact of ENSO on landfall characteristics of tropical cyclones over the western North Pacific during the summer monsoon season. Geophys. Res. Lett., 33, L21815, doi:10.1029/2006GL027449.

    • Search Google Scholar
    • Export Citation
  • George, J. E., , and W. M. Gray, 1977: Tropical cyclone recurvature and nonrecurvature as related to surrounding wind–height fields. J. Appl. Meteor., 16, 3442, doi:10.1175/1520-0450(1977)016<0034:TCRANA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155–218.

  • Gray, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 3769, doi:10.1007/BF01277501.

  • Harr, P. A., , and R. L. Elsberry, 1991: Tropical cyclone track characteristics as a function of large-scale circulation anomalies. Mon. Wea. Rev., 119, 14481468, doi:10.1175/1520-0493(1991)119<1448:TCTCAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., , and M. Lander, 1993: The meandering nature of tropical cyclone tracks. J. Atmos. Sci., 50, 12541266, doi:10.1175/1520-0469(1993)050<1254:TMNOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., , Y.-H. Li, , T. Li, , and M.-Y. Lee, 2011: Impacts of central Pacific and eastern Pacific El Niños on tropical cyclone tracks over the western North Pacific. Geophys. Res. Lett., 38, L16712, doi:10.1029/2011GL048821.

    • Search Google Scholar
    • Export Citation
  • Iizuka, S., , and T. Matsuura, 2008: ENSO and western North Pacific tropical cyclone activity simulated in a CGCM. Climate Dyn., 30, 815830, doi:10.1007/s00382-007-0326-x.

    • Search Google Scholar
    • Export Citation
  • Jia, L., and Coauthors, 2015: Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J. Climate, 28, 20442062, doi:10.1175/JCLI-D-14-00112.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., , P. J. Webster, , and J. A. Curry, 2009: Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325, 7780, doi:10.1126/science.1174062.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., , G. A. Vecchi, , T. R. Knutson, , W. G. Anderson, , T. L. Delworth, , A. Rosati, , F. Zeng, , and M. Zhao, 2014: Tropical cyclone simulation and response to CO2 doubling in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 27, 80348054, doi:10.1175/JCLI-D-13-00475.1.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. P., and Coauthors, 2014: The North American multimodel ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585601, doi:10.1175/BAMS-D-12-00050.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., , M. C. Kruk, , D. H. Levinson, , H. J. Diamond, , and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, L., , G. Vecchi, , R. Msadek, , A. Wittenberg, , T. Delworth, , and F. Zeng, 2015: The seasonality of the Great Plains low-level jet and ENSO relationship. J. Climate, 28, 45254544, doi:10.1175/JCLI-D-14-00590.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, L., , G. Vecchi, , R. Msadek, , H. Murakami, , A. Wittenberg, , and F. Zeng, 2016: Impact of strong ENSO on regional tropical cyclone activity in a high-resolution climate model in the North Pacific and North Atlantic Oceans. J. Climate, doi: 10.1175/JCLI-D-15-0468.1, in press.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and S. Yang, 1996: Seasonal variation, abrupt transition, and intraseasonal variability associated with the Asian summer monsoon in the GLA GCM. J. Climate, 9, 965985, doi:10.1175/1520-0442(1996)009<0965:SVATAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., , and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9, 20362057, doi:10.1175/1520-0442(1996)009<2036:TROTBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, C., , and C. Wang, 2014: Simulated impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific: Large-scale atmospheric response. Climate Dyn., 42, 27272743, doi:10.1007/s00382-013-1999-y.

    • Search Google Scholar
    • Export Citation
  • Li, R. C., , and W. Zhou, 2012: Changes in western Pacific tropical cyclones associated with the El Niño–Southern Oscillation cycle. J. Climate, 25, 58645878, doi:10.1175/JCLI-D-11-00430.1.

    • Search Google Scholar
    • Export Citation
  • Lyons, S. W., 2004: U.S. tropical cyclone landfall variability: 1950–2002. Wea. Forecasting, 19, 473480, doi:10.1175/1520-0434(2004)019<0473:UTCLV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Magnusson, L., , M. Alonso-Balmaseda, , and F. Molteni, 2013: On the dependence of ENSO simulation on the coupled model mean state. Climate Dyn., 41, 15091525, doi:10.1007/s00382-012-1574-y.

    • Search Google Scholar
    • Export Citation
  • Msadek, R., , G. A. Vecchi, , M. Winton, , and R. G. Gudgel, 2014: Importance of initial conditions in seasonal predictions of Arctic sea ice extent. Geophys. Res. Lett., 41, 52085215, doi:10.1002/2014GL060799.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , and M. Sugi, 2010: Effect of model resolution on tropical cyclone climate projections. SOLA, 6, 7376, doi:10.2151/sola.2010-019.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , and B. Wang, 2010: Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 26992721, doi:10.1175/2010JCLI3338.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , B. Wang, , and A. Kitoh, 2011: Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. J. Climate, 24, 11541169, doi:10.1175/2010JCLI3723.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2015: Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J. Climate, 28, 90589079, doi:10.1175/JCLI-D-15-0216.1.

    • Search Google Scholar
    • Export Citation
  • Peduzzi, P., , B. Chatenoux, , H. Dao, , A. De Bono, , C. Herold, , J. Kossin, , F. Mouton, , and O. Nordbeck, 2012: Global trends in tropical cyclone risk. Nat. Climate Change, 2, 289294, doi:10.1038/nclimate1410.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G. H., 1983: El Niño Southern Oscillation phenomena. Nature, 302, 295301, doi:10.1038/302295a0.

  • Pielke, R., Jr., , J. Gratz, , C. Landsea, , D. Collins, , M. Saunders, , and R. Musulin, 2008: Normalized hurricane damage in the United States: 1900–2005. Nat. Hazards Rev., 9, 2942, doi:10.1061/(ASCE)1527-6988(2008)9:1(29).

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., , and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rayner, N., , D. E. Parker, , E. Horton, , C. Folland, , L. Alexander, , D. Rowell, , E. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Riehl, H., , and R. J. Shafer, 1944: The recurvature of tropical storms. J. Atmos. Sci., 1, 4254, doi:10.1175/1520-0469(1944)001<0001:TROTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shaevitz, D. A., and Coauthors, 2014: Characteristics of tropical cyclones in high-resolution models in the present climate. J. Adv. Model. Earth Syst., 6, 11541172, doi:10.1002/2014MS000372.

    • Search Google Scholar
    • Export Citation
  • Shaffrey, L. C., and Coauthors, 2009: UK HiGEM: The new UK high-resolution global environment model—Model description and basic evaluation. J. Climate, 22, 18611896, doi:10.1175/2008JCLI2508.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , J. M. Caron, , D. P. Stepaniak, , and S. Worley, 2002: Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res., 107, doi:10.1029/2000JD000298.

    • Search Google Scholar
    • Export Citation
  • Tuleya, R., , M. Bender, , and Y. Kurihara, 1984: A simulation study of the landfall of tropical cyclones using a movable nested-mesh model. Mon. Wea. Rev., 112, 124136, doi:10.1175/1520-0493(1984)112<0124:ASSOTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Coauthors, 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 79948016, doi:10.1175/JCLI-D-14-00158.1.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., , and J. Anderson, 2001: Sensitivity of Atlantic tropical storm frequency to ENSO and interdecadal variability of SSTs in an ensemble of AGCM integrations. J. Climate, 14, 533545, doi:10.1175/1520-0442(2001)014<0533:SOATSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658, doi:10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , J. Sun, , and K. Fan, 2007: Relationships between the North Pacific Oscillation and the typhoon/hurricane frequencies. Sci. China, 50D, 14091416, doi:10.1007/s11430-007-0097-6.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and Coauthors, 2014: How well do global climate models simulate the variability of Atlantic tropical cyclones associated with ENSO? J. Climate, 27, 56735692, doi:10.1175/JCLI-D-13-00625.1.

    • Search Google Scholar
    • Export Citation
  • Wong, M. L. M., , and J. C. L. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 61, 18591876, doi:10.1175/1520-0469(2004)061<1859:TCIIVW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, G., , and N.-C. Lau, 1992: A GCM simulation of the relationship between tropical-storm formation and ENSO. Mon. Wea. Rev., 120, 958977, doi:10.1175/1520-0493(1992)120<0958:AGSOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , and B. Wang, 2000: A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon. Wea. Rev., 128, 18991911, doi:10.1175/1520-0493(2000)128<1899:APVTDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , and B. Wang, 2001: Movement and vertical coupling of adiabatic baroclinic tropical cyclones. J. Atmos. Sci., 58, 18011814, doi:10.1175/1520-0469(2001)058<1801:MAVCOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, M., , W. Chang, , and W. Leung, 2004: Impacts of El Niño–Southern Oscillation events on tropical cyclone landfalling activity in the western North Pacific. J. Climate, 17, 14191428, doi:10.1175/1520-0442(2004)017<1419:IOENOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1991: Large-scale response of the ocean to atmospheric forcing at low frequencies. J. Geophys. Res., 96, 15 08315 092, doi:10.1029/91JC01457.

    • Search Google Scholar
    • Export Citation
  • Yang, X., and Coauthors, 2015a: Seasonal predictability of extratropical storm tracks in GFDL’s high-resolution climate prediction model. J. Climate, 28, 35923611, doi:10.1175/JCLI-D-14-00517.1.

    • Search Google Scholar
    • Export Citation
  • Yang, X., , G. A. Vecchi, , T. L. Delworth, , K. Paffendorf, , R. Gudgel, , L. Jia, , S. D. Underwood, , and F. Zeng, 2015b: Extreme North America winter storm season of 2013/14: Roles of radiative forcing and the global warming hiatus [in “Explaining Extremes of 2014 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., S25S28, doi:10.1175/BAMS-D-15-00133.

    • Search Google Scholar
    • Export Citation
  • Zehr, R. M., 1992: Tropical cyclogenesis in the western North Pacific. Ph.D. thesis, Colorado State University, 181 pp.

  • Zhang, Q., , Q. Liu, , and L. Wu, 2009: Tropical cyclone damages in China 1983–2006. Bull. Amer. Meteor. Soc., 90, 489495, doi:10.1175/2008BAMS2631.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., , H. F. Graf, , Y. Leung, , and M. Herzog, 2012: Different El Niño types and tropical cyclone landfall in East Asia. J. Climate, 25, 65106523, doi:10.1175/JCLI-D-11-00488.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., , Y. Leung, , and K. Fraedrich, 2015: Different El Niño types and intense typhoons in the western North Pacific. Climate Dyn., 44, 29652977, doi:10.1007/s00382-014-2446-4.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., , G. Vecchi, , H. Murakami, , G. Villarini, , and L. Jia, 2016: The Pacific meridional mode and the occurrence of tropical cyclones in the western North Pacific. J. Climate, 29, 381398, doi:10.1175/JCLI-D-15-0282.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , S.-J. Lin, , and G. A. Vecchi, 2009: Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J. Climate, 22, 66536678, doi:10.1175/2009JCLI3049.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., , I. M. Held, , and G. A. Vecchi, 2010: Retrospective forecasts of the hurricane season using a global atmospheric model assuming persistence of SST anomalies. Mon. Wea. Rev., 138, 38583868, doi:10.1175/2010MWR3366.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 128 128 29
PDF Downloads 41 41 10

Improved Simulation of Tropical Cyclone Responses to ENSO in the Western North Pacific in the High-Resolution GFDL HiFLOR Coupled Climate Model

View More View Less
  • 1 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
  • 2 Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey
  • 3 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster, Ministry of Education, and Earth System Modeling Center, Nanjing International Academy of Meteorological Sciences, Nanjing University of Information Science and Technology, Nanjing, China
  • 4 Engility Corporation, Chantilly, Virginia
  • 5 ** IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa
© Get Permissions
Restricted access

Abstract

This study aims to assess whether, and the extent to which, an increase in atmospheric resolution of the Geophysical Fluid Dynamics Laboratory (GFDL) Forecast-Oriented Low Ocean Resolution version of CM2.5 (FLOR) with 50-km resolution and the High-Resolution FLOR (HiFLOR) with 25-km resolution improves the simulation of the El Niño–Southern Oscillation (ENSO)–tropical cyclone (TC) connections in the western North Pacific (WNP). HiFLOR simulates better ENSO–TC connections in the WNP including TC track density, genesis, and landfall than FLOR in both long-term control experiments and sea surface temperature (SST)- and sea surface salinity (SSS)-restoring historical runs (1971–2012). Restoring experiments are performed with SSS and SST restored to observational estimates of climatological SSS and interannually varying monthly SST. In the control experiments of HiFLOR, an improved simulation of the Walker circulation arising from more realistic SST and precipitation is largely responsible for its better performance in simulating ENSO–TC connections in the WNP. In the SST-restoring experiments of HiFLOR, more realistic Walker circulation and steering flow during El Niño and La Niña are responsible for the improved simulation of ENSO–TC connections in the WNP. The improved simulation of ENSO–TC connections with HiFLOR arises from a better representation of SST and better responses of environmental large-scale circulation to SST anomalies associated with El Niño or La Niña. A better representation of ENSO–TC connections in HiFLOR can benefit the seasonal forecasting of TC genesis, track, and landfall; improve understanding of the interannual variation of TC activity; and provide better projection of TC activity under climate change.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0475.s1.

Corresponding author address: Wei Zhang, NOAA/Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Princeton, NJ 08540. E-mail: wei.zhang@noaa.gov

Abstract

This study aims to assess whether, and the extent to which, an increase in atmospheric resolution of the Geophysical Fluid Dynamics Laboratory (GFDL) Forecast-Oriented Low Ocean Resolution version of CM2.5 (FLOR) with 50-km resolution and the High-Resolution FLOR (HiFLOR) with 25-km resolution improves the simulation of the El Niño–Southern Oscillation (ENSO)–tropical cyclone (TC) connections in the western North Pacific (WNP). HiFLOR simulates better ENSO–TC connections in the WNP including TC track density, genesis, and landfall than FLOR in both long-term control experiments and sea surface temperature (SST)- and sea surface salinity (SSS)-restoring historical runs (1971–2012). Restoring experiments are performed with SSS and SST restored to observational estimates of climatological SSS and interannually varying monthly SST. In the control experiments of HiFLOR, an improved simulation of the Walker circulation arising from more realistic SST and precipitation is largely responsible for its better performance in simulating ENSO–TC connections in the WNP. In the SST-restoring experiments of HiFLOR, more realistic Walker circulation and steering flow during El Niño and La Niña are responsible for the improved simulation of ENSO–TC connections in the WNP. The improved simulation of ENSO–TC connections with HiFLOR arises from a better representation of SST and better responses of environmental large-scale circulation to SST anomalies associated with El Niño or La Niña. A better representation of ENSO–TC connections in HiFLOR can benefit the seasonal forecasting of TC genesis, track, and landfall; improve understanding of the interannual variation of TC activity; and provide better projection of TC activity under climate change.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0475.s1.

Corresponding author address: Wei Zhang, NOAA/Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Princeton, NJ 08540. E-mail: wei.zhang@noaa.gov

Supplementary Materials

    • Supplemental Materials (DOCX 726.60 KB)
Save