• Bigorre, S., , R. A. Weller, , J. Lord, , J. B. Edson, , and J. D. Ware, 2013: A surface mooring for air–sea interaction research in the Gulf Stream. Part II: Analysis of the observations and their accuracies. J. Atmos. Oceanic Technol., 30, 450469, doi:10.1175/JTECH-D-12-00078.1.

    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., , S. T. Gille, , D. L. Jackson, , J. B. Roberts, , and G. A. Wick, 2010: Ocean winds and turbulent air–sea fluxes inferred from remote sensing. Oceanography, 23, 3651, doi:10.5670/oceanog.2010.04.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., 1983: Effects of sampling errors in statistical estimation. Deep-Sea Res., 30, 10831103, doi:10.1016/0198-0149(83)90062-6.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , and S.-P. Xie, 2010: Coupled ocean–atmosphere interaction at oceanic mesoscale. Oceanography, 23, 5269, doi:10.5670/oceanog.2010.05.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 14791498, doi:10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., , M. G. Schlax, , M. H. Freilich, , and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, doi:10.1126/science.1091901.

    • Search Google Scholar
    • Export Citation
  • Colton, M. C., , W. J. Plant, , W. C. Keller, , and G. L. Geernaert, 1995: Tower-based measurements of normalized radar cross section from Lake Ontario: Evidence of wind stress dependence. J. Geophys. Res., 100, 87918813, doi:10.1029/95JC00364.

    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., , S.-P. Xie, , and H. Hashizume, 2003: Barometric pressure variations associated with eastern Pacific tropical instability waves. J. Climate, 16, 30503057, doi:10.1175/1520-0442(2003)016<3050:BPVAWE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., , H. C. Graber, , and M. J. Caruso: 2002: Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J. Atmos. Oceanic Technol., 19, 20492062, doi:10.1175/1520-0426(2002)019<2049:EOWVOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., , and C. W. Fairall, 1998: Similarity relationships in the marine atmospheric surface layer for terms in the TKE and scalar variance budgets. J. Atmos. Sci., 55, 23112328, doi:10.1175/1520-0469(1998)055<2311:SRITMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., , A. A. Hinton, , K. E. Prada, , J. E. Hare, , and C. W. Fairall, 1998: Direct covariance flux estimates from mobile platforms at sea. J. Atmos. Oceanic Technol., 15, 547562, doi:10.1175/1520-0426(1998)015<0547:DCFEFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., , C. J. Zappa, , J. A. Ware, , W. R. McGillis, , and J. E. Hare, 2004: Scalar flux profile relationships over the open ocean. J. Geophys. Res., 109, C08S09, doi:10.1029/2003JC001960.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, doi:10.1175/JPO-D-12-0173.1.

    • Search Google Scholar
    • Export Citation
  • Emery, W. J., , and R. E. Thomson, 2001: Data Analysis Methods in Physical Oceanography. Elsevier Science, 638 pp.

  • Fairall, C. W., , E. F. Bradley, , D. P. Rogers, , J. B. Edson, , and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764, doi:10.1029/95JC03205.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , J. E. Hare, , A. A. Grachev, , and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Freilich, M., , and R. Dunbar, 1999: The accuracy of the NSCAT 1 vector winds: Comparisons with National Data Buoy Center buoys. J. Geophys. Res., 104, 11 23111 246, doi:10.1029/1998JC900091.

    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., , and C. N. K. Mooers, 1983: Meanders of the Gulf Stream downstream from Cape Hatteras 1975–1978. J. Phys. Oceanogr., 13, 12751292, doi:10.1175/1520-0485(1983)013<1275:MOTGSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hansen, D. V., 1970: Gulf Stream meanders between Cape Hatteras and the Grand Banks. Deep-Sea Res., 17, 495511, doi:10.1016/0011-7471(70)90064-1.

    • Search Google Scholar
    • Export Citation
  • Hosom, D. S., , R. A. Weller, , R. E. Payne, , and K. E. Prada, 1995: The IMET (improved meteorology) ship and buoy systems. J. Atmos. Oceanic Technol., 12, 527540, doi:10.1175/1520-0426(1995)012<0527:TIMSAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., , S. Dickinson, , M. J. McPhaden, , and G. C. Johnson, 2001: Ocean currents evident in satellite wind data. Geophys. Res. Lett., 28, 24692472, doi:10.1029/2000GL012610.

    • Search Google Scholar
    • Export Citation
  • Larsen, S. E., , J. B. Edson, , C. W. Fairall, , and P. G. Mestayer, 1993: Measurement of temperature spectra by a sonic anemometer. J. Atmos. Oceanic Technol., 10, 345354, doi:10.1175/1520-0426(1993)010<0345:MOTSBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, T., , and P. Cornillon, 1996: Propagation and growth of Gulf Stream meanders between 75° and 45°W. J. Phys. Oceanogr., 26, 225241, doi:10.1175/1520-0485(1996)026<0225:PAGOGS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., , and W. Tang, 1996: Equivalent neutral wind. Jet Propulsion Laboratory Tech. Rep. 96-17, 22 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970010322.pdf.]

  • Marshall, J., and Coauthors, 2009: The CLIMODE field campaign: Observing the cycle of convection and restratification over the Gulf Stream. Bull. Amer. Meteor. Soc., 90, 13371350, doi:10.1175/2009BAMS2706.1.

    • Search Google Scholar
    • Export Citation
  • Miller, S., , C. Friehe, , T. Hristov, , and J. Edson, 2008: Platform motion effects on measurements of turbulence and air–sea exchange over the open ocean. J. Atmos. Oceanic Technol., 25, 16831694, doi:10.1175/2008JTECHO547.1.

    • Search Google Scholar
    • Export Citation
  • NOAA/National Data Buoy Center, 2012: Historical standard meteorological station data. [Available online at http:/www.ndbc.noaa.gov/data.]

  • O’Neill, L. W., 2012: Wind speed and stability effects on coupling between surface wind stress and SST observed from buoys and satellite. J. Climate, 25, 15441569, doi:10.1175/JCLI-D-11-00121.1.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., , D. B. Chelton, , and S. K. Esbensen, 2003: Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales. J. Climate, 16, 23402354, doi:10.1175/2780.1.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., , D. B. Chelton, , S. K. Esbensen, , and F. J. Wentz, 2005: High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas Return Current. J. Climate, 18, 27062723, doi:10.1175/JCLI3415.1.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., , D. B. Chelton, , and S. K. Esbensen, 2010a: The effects of SST-induced surface wind speed and direction gradients on midlatitude surface vorticity and divergence. J. Climate, 23, 255281, doi:10.1175/2009JCLI2613.1.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., , S. K. Esbensen, , N. Thum, , R. M. Samelson, , and D. B. Chelton, 2010b: Dynamical analysis of the boundary layer and surface wind responses to mesoscale SST perturbations. J. Climate, 23, 559581, doi:10.1175/2009JCLI2662.1.

    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., , D. B. Chelton, , and S. K. Esbensen, 2012: Covariability of surface wind and stress responses to sea surface temperature fronts. J. Climate, 25, 59165942, doi:10.1175/JCLI-D-11-00230.1.

    • Search Google Scholar
    • Export Citation
  • Park, K.-A., , P. C. Cornillon, , and D. L. Codiga, 2006: Modification of surface winds near ocean fronts: Effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations. J. Geophys. Res., 111, C03021, doi:10.1029/2005JC003016.

    • Search Google Scholar
    • Export Citation
  • Perlin, N., , S. P. de Szoeke, , D. B. Chelton, , R. M. Samuelson, , E. D. Skyllinstad, , and L. W. O’Neill, 2014: On scatterometer ocean stress. Mon. Wea. Rev., 142, 42844307, doi:10.1175/MWR-D-13-00332.1.

    • Search Google Scholar
    • Export Citation
  • Pineda, J., , and M. Lopez, 2002: Temperature, stratification and barnacle larval settlement in two Californian sites. Cont. Shelf Res., 22, 11831198, doi:10.1016/S0278-4343(01)00098-X.

    • Search Google Scholar
    • Export Citation
  • Plagge, A. M., , D. C. Vandemark, , and D. G. Long, 2009: Coastal validation of ultra-high resolution wind vector retrieval from QuikSCAT in the Gulf of Maine. IEEE Geosci. Remote Sens. Lett., 6, 413417, doi:10.1109/LGRS.2009.2014852.

    • Search Google Scholar
    • Export Citation
  • Plagge, A. M., , D. C. Vandemark, , and B. Chapron, 2012: Examining the impact of surface currents on satellite scatterometer and altimeter ocean winds. J. Atmos. Oceanic Technol., 29, 17761793, doi:10.1175/JTECH-D-12-00017.1.

    • Search Google Scholar
    • Export Citation
  • Quilfen, Y., , B. Chapron, , and D. Vandemark, 2001: The ERS scatterometer wind measurement accuracy: Evidence of seasonal and regional biases. J. Atmos. Oceanic Technol., 18, 16841697, doi:10.1175/1520-0426(2001)018<1684:TESWMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ross, D. B., , V. J. Cardone, , J. Overland, , R. D. McPherson, , W. J. Pierson, , and T.-W. Yu, 1985: Ocean surface winds. Adv. Geophys., 27, 101140, doi:10.1016/S0065-2687(08)60404-5.

    • Search Google Scholar
    • Export Citation
  • SeaPAC, 2013: QuikSCAT Level 2B ocean wind vectors in 12.5 km slice composites version 3. PO.DAAC, doi:10.5067/QSX12-L2B01.

  • Schneider, N., , and B. Qiu, 2015: The atmospheric response to weak sea surface temperature fronts. J. Atmos. Sci., 72, 33563377, doi:10.1175/JAS-D-14-0212.1.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, doi:10.1016/j.dynatmoce.2008.01.001.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15 46715 472, doi:10.1029/JC093iC12p15467.

    • Search Google Scholar
    • Export Citation
  • Song, Q., , P. Cornillon, , and T. Hara, 2006: Surface wind response to oceanic fronts. J. Geophys. Res., 111, C12006, doi:10.1029/2006JC003680.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2007: Midlatitude wind stress–sea surface temperature coupling in the vicinity of oceanic fronts. J. Climate, 20, 37853801, doi:10.1175/JCLI4234.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. O. R. Y., 1979: Coherence significance levels. J. Atmos. Sci., 36, 20202021, doi:10.1175/1520-0469(1979)036<2020:CSL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Verschell, M., , M. Bourassa, , D. Weissman, , and J. O’Brien, 1999: Ocean model validation of the NASA scatterometer winds. J. Geophys. Res., 104, 11 35911 373, doi:10.1029/1998JC900105.

    • Search Google Scholar
    • Export Citation
  • Wai, M., , and S. A. Stage, 1989: Dynamical analysis of marine atmospheric boundary layer structure near the Gulf Stream oceanic front. Quart. J. Roy. Meteor. Soc., 115, 2944, doi:10.1002/qj.49711548503.

    • Search Google Scholar
    • Export Citation
  • Weissman, D. E., 1990: Dependence of the microwave radar cross section on ocean surface variables: Comparison of measurements and theory using data from the Frontal Air–Sea Interaction Experiment. J. Geophys. Res., 95, 33873398, doi:10.1029/JC095iC03p03387.

    • Search Google Scholar
    • Export Citation
  • Weissman, D. E., , and H. Graber, 1999: Satellite scatterometer studies of ocean surface stress and drag coefficients using a direct model. J. Geophys. Res., 104, 11 32911 335, doi:10.1029/1998JC900117.

    • Search Google Scholar
    • Export Citation
  • Weissman, D. E., and Coauthors, 1997: Measurements of ocean surface stress using aircraft scatterometers. J. Atmos. Oceanic Technol., 14, 835848, doi:10.1175/1520-0426(1997)014<0835:MOOSSU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., , S. P. Bigorre, , J. Lord, , J. D. Ware, , and J. B. Edson, 2012: A surface mooring for air–sea interaction research in the Gulf Stream. Part I: Mooring design and instrumentation. J. Atmos. Oceanic Technol., 29, 13631376, doi:10.1175/JTECH-D-12-00060.1.

    • Search Google Scholar
    • Export Citation
  • Whitney, M. M., , and R. W. Garvine, 2006: Simulating the Delaware Bay buoyant outflow: Comparison with observations. J. Phys. Oceanogr., 36, 321, doi:10.1175/JPO2805.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , M. Ishiwatari, , H. Hashizume, , and K. Takeuchi, 1998: Coupled ocean–atmosphere waves on the equatorial front. Geophys. Res. Lett., 25, 38633866, doi:10.1029/1998GL900014.

    • Search Google Scholar
    • Export Citation
  • Zhang, R.-H., , and A. J. Busalacchi, 2009: An empirical model for surface wind stress response to SST forcing induced by tropical instability waves (TIWs) in the eastern equatorial Pacific. Mon. Wea. Rev., 137, 20212046, doi:10.1175/2008MWR2712.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 26 26 11
PDF Downloads 19 19 9

In Situ and Satellite Evaluation of Air–Sea Flux Variation near Ocean Temperature Gradients

View More View Less
  • 1 Thayer School of Engineering, Dartmouth College, Lebanon, New Hampshire
  • 2 Department of Marine Sciences, University of Connecticut, Groton, Connecticut
  • 3 Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire
© Get Permissions
Restricted access

Abstract

Observations of ocean–atmosphere coupling across persistent mesoscale sea surface temperature (SST) gradients are used to examine the controls of atmospheric stability, pressure gradient force, and heat flux that are considered central to oft-observed coupling between wind and SST. Moored air–sea flux measurements near the Gulf Stream are combined with QuikSCAT satellite scatterometer equivalent neutral wind (ENW) data to assess correlations between SST, air–sea fluxes, pressure, and wind perturbations at scales of 10–100 days. The net effect of ocean fronts meandering past the site enabled buoy observation of SST impacts on wind, with coupling coefficients of 0.3–0.5 similar to past studies. Wind stress–SST and ENW–SST correlation coefficients are slightly higher, and roughly 20% of the ENW perturbation is attributed to stratification impacts predicted by Monin–Obukhov (MO) similarity theory. Significantly higher correlation is observed when relating wind or stress perturbations to buoyant heat flux variation. Atmospheric pressure perturbation with SST of order 0.5 hPa °C−1 is observed, as well as high negative correlation between wind and pressure variations. Length and time scales associated with the coupling indicate that peak correlations occur at 50–70 days and 300–500 km, consistent with mesoscale meander scales. Coupling coefficient values vary significantly depending on analysis time scale and exhibit a range near to recently observed interbasin variability. This variability is attributed to the extent of oceanic length scales permitted in the analysis. Together, results affirm the central role of SST-induced turbulent heat flux in controlling pressure field adjustments and thereby the wind perturbations over SST fronts.

Corresponding author address: Dr. Douglas Vandemark, 8 College Rd., 142 Morse Hall, University of New Hampshire, Durham, NH 03824. E-mail: doug.vandemark@unh.edu

Abstract

Observations of ocean–atmosphere coupling across persistent mesoscale sea surface temperature (SST) gradients are used to examine the controls of atmospheric stability, pressure gradient force, and heat flux that are considered central to oft-observed coupling between wind and SST. Moored air–sea flux measurements near the Gulf Stream are combined with QuikSCAT satellite scatterometer equivalent neutral wind (ENW) data to assess correlations between SST, air–sea fluxes, pressure, and wind perturbations at scales of 10–100 days. The net effect of ocean fronts meandering past the site enabled buoy observation of SST impacts on wind, with coupling coefficients of 0.3–0.5 similar to past studies. Wind stress–SST and ENW–SST correlation coefficients are slightly higher, and roughly 20% of the ENW perturbation is attributed to stratification impacts predicted by Monin–Obukhov (MO) similarity theory. Significantly higher correlation is observed when relating wind or stress perturbations to buoyant heat flux variation. Atmospheric pressure perturbation with SST of order 0.5 hPa °C−1 is observed, as well as high negative correlation between wind and pressure variations. Length and time scales associated with the coupling indicate that peak correlations occur at 50–70 days and 300–500 km, consistent with mesoscale meander scales. Coupling coefficient values vary significantly depending on analysis time scale and exhibit a range near to recently observed interbasin variability. This variability is attributed to the extent of oceanic length scales permitted in the analysis. Together, results affirm the central role of SST-induced turbulent heat flux in controlling pressure field adjustments and thereby the wind perturbations over SST fronts.

Corresponding author address: Dr. Douglas Vandemark, 8 College Rd., 142 Morse Hall, University of New Hampshire, Durham, NH 03824. E-mail: doug.vandemark@unh.edu
Save