• Alley, R. B., and Coauthors, 1993: Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature, 362, 527529, doi:10.1038/362527a0.

    • Search Google Scholar
    • Export Citation
  • Anderson, B. D. O., , and G. B. Moore, 1979: Optimal Filtering. Prentice Hall, 368 pp.

  • Austin, W. E. N., , and F. D. Hibbert, 2012: Tracing time in the ocean: A brief review of chronological constraints (60–8 kyr) on North Atlantic marine event-based stratigraphies. Quat. Sci. Rev., 36, 2837, doi:10.1016/j.quascirev.2012.01.015.

    • Search Google Scholar
    • Export Citation
  • Bard, E., 2001: Comparison of alkenone estimates with other paleotemperature proxies. Geochem. Geophys. Geosyst., 2, 1002, doi:10.1029/2000GC000050.

    • Search Google Scholar
    • Export Citation
  • Bard, E., , M. Arnold, , P. Maurice, , J. Duprat, , J. Moyes, , and J.-C. Duplessy, 1987: Retreat velocity of the North Atlantic polar front during the last deglaciation determined by 14C accelerator mass spectrometry. Nature, 328, 791794, doi:10.1038/328791a0.

    • Search Google Scholar
    • Export Citation
  • Barker, S., , J. Chen, , X. Gong, , L. Jonkers, , G. Knorr, , and D. Thornalley, 2015: Icebergs not the trigger for North Atlantic cold events. Nature, 520, 333336, doi:10.1038/nature14330.

    • Search Google Scholar
    • Export Citation
  • Belkin, I. M., , and S. Levitus, 1996: Temporal variability of the Subarctic Front near the Charlie-Gibbs Fracture Zone. J. Geophys. Res., 101, 28 31728 324, doi:10.1029/96JC02794.

    • Search Google Scholar
    • Export Citation
  • Bevington, P. R., , and D. K. Robinson, 1992: Data Reduction and Error Analysis for the Physical Sciences. 2nd ed. McGraw-Hill, 328 pp.

  • Bower, A. S., , and W.-J. von Appen, 2008: Interannual variability in the pathways of the North Atlantic Current over the Mid-Atlantic Ridge and the impact of topography. J. Phys. Oceanogr., 38, 104120, doi:10.1175/2007JPO3686.1.

    • Search Google Scholar
    • Export Citation
  • Braconnot, P., and Coauthors, 2007: Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—Part 1: Experiments and large-scale features. Climate Past, 3, 261277, doi:10.5194/cp-3-261-2007.

    • Search Google Scholar
    • Export Citation
  • Bryson, A. E., , and Y.-C. Ho, 1975: Applied Optimal Control. Taylor and Francis, 482 pp.

  • Chapman, M., , N. J. Shackleton, , M. Zhao, , and G. Eglinton, 1996: Faunal and alkenone reconstructions of subtropical North Atlantic surface hydrography and paleotemperature over the last 28 kyr. Paleoceanography, 11, 343357, doi:10.1029/96PA00041.

    • Search Google Scholar
    • Export Citation
  • Chen, C. T., 1999: Linear System Theory and Design. Oxford University Press, 334 pp.

  • Chen, L. G., 1995: Mixed layer density ratio from the Levitus data. J. Phys. Oceanogr., 25, 691701, doi:10.1175/1520-0485(1995)025<0691:MLDRFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, P. U., and Coauthors, 2009: The Last Glacial Maximum. Science, 325, 710714, doi:10.1126/science.1172873.

  • CLIMAP, 1976: The surface of the Ice-Age Earth. Science, 191, 11311137, doi:10.1126/science.191.4232.1131.

  • Colin de Verdière, A., , H. Mercier, , and M. Arhan, 1989: Mesoscale variability transition from the western to the eastern Atlantic along 48°N. J. Phys. Oceanogr., 19, 11491170, doi:10.1175/1520-0485(1989)019<1149:MVTFTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., 1981: Effects of horizontal advection on upper-ocean mixing: A case of frontogenesis. J. Phys. Oceanogr., 11, 13451356, doi:10.1175/1520-0485(1981)011<1345:EOHAOU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dail, H., , and C. Wunsch, 2014: Dynamical reconstruction of upper-ocean conditions in the Last Glacial Maximum. J. Climate, 27, 807823, doi:10.1175/JCLI-D-13-00211.1.

    • Search Google Scholar
    • Export Citation
  • de Ruijter, W. P. M., 1983: Effects of velocity shear in advective mixed-layer models. J. Phys. Oceanogr., 13, 15891599, doi:10.1175/1520-0485(1983)013<1589:EOVSIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , M. A. Alexander, , S.-P. Xie, , and A. S. Phillips, 2010: Sea surface temperature variability. Annu. Rev. Mar. Sci., 2, 115143, doi:10.1146/annurev-marine-120408-151453.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, R. A., 1980: On the effects of horizontal variability of wind stress on the dynamics of the ocean mixed layer. J. Phys. Oceanogr., 10, 14391454, doi:10.1175/1520-0485(1980)010<1439:OTEOHV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duplessy, J.-C., , L. Labeyrie, , M. Arnold, , M. Paterne, , J. Duprat, , and T. C. E. Van Weering, 1992: Changes in surface salinity of the North Atlantic Ocean during the last deglaciation. Nature, 358, 485488, doi:10.1038/358485a0.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343367, doi:10.1007/s10236-003-0036-9.

    • Search Google Scholar
    • Export Citation
  • Eynaud, F., and Coauthors, 2009: Position of the Polar Front along the western Iberian margin during key cold episodes of the last 45 ka. Geochem. Geophys. Geosyst., 10, Q07U05, doi:10.1029/2009GC002398.

    • Search Google Scholar
    • Export Citation
  • Fraser, D. C., 1967: A new technique for the optimal smoothing of data. Ph.D. dissertation, Massachusetts Institute of Technology, 195 pp.

  • Fratantoni, D., 2001: North Atlantic surface circulation during the 1990’s observed with satellite-tracked drifters. J. Geophys. Res., 106, 22 06722 093, doi:10.1029/2000JC000730.

    • Search Google Scholar
    • Export Citation
  • Fukumori, I., 2002: A partitioned Kalman filter and smoother. Mon. Wea. Rev., 130, 13701383, doi:10.1175/1520-0493(2002)130<1370:APKFAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gaspar, P., , and C. Wunsch, 1989: Estimates from altimetric data of barotropic waves in the northwestern Atlantic Ocean. J. Phys. Oceanogr., 19, 18211844, doi:10.1175/1520-0485(1989)019<1821:EFADOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gelb, A., , J. F. Kasper, , R. A. Nash, , C. F. Price, , and A. A. Sutherland, 1974: Applied Optimal Estimation. M.I.T. Press, 374 pp.

  • Haney, R. L., 1971: Surface thermal boundary conditions for ocean general circulation models. J. Phys. Oceanogr., 1, 241248, doi:10.1175/1520-0485(1971)001<0241:STBCFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jackson, C., 2000: Sensitivity of stationary wave amplitude to regional changes in Laurentide ice sheet topography in single-layer models of the atmosphere. J. Geophys. Res., 105, 24 44324 454, doi:10.1029/2000JD900377.

    • Search Google Scholar
    • Export Citation
  • Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, 376 pp.

  • Keffer, T., , D. G. Martinson, , and B. H. Corliss, 1988: The position of the Gulf Stream during Quaternary glaciations. Science, 241, 440442, doi:10.1126/science.241.4864.440.

    • Search Google Scholar
    • Export Citation
  • Krauss, W., 1986: The North Atlantic Current. J. Geophys. Res., 91, 50615074, doi:10.1029/JC091iC04p05061.

  • Labeyrie, L., and Coauthors, 1999: Temporal variability of the surface and deep waters of the North West Atlantic Ocean at orbital and millennial scales. Mechanisms of Global Climate Change at Millennial Time Scales, Geophys. Monogr., Vol. 112, Amer. Geophys. Union, 77–98, doi:10.1029/GM112p0077.

  • Lehman, S. J., , and L. D. Keigwin, 1992: Sudden changes in North Atlantic circulation during the last deglaciation. Nature, 356, 757762, doi:10.1038/356757a0.

    • Search Google Scholar
    • Export Citation
  • Liebelt, P. B., 1967: An Introduction to Optimal Estimation. Addison-Wesley, 273 pp.

  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp.

  • Mann, C. R., 1967: The termination of the Gulf Stream and the beginning of the North Atlantic Current. Deep-Sea Res., 14, 337359, doi:10.1016/0011-7471(67)90077-0.

    • Search Google Scholar
    • Export Citation
  • Marchal, O., 2014: On the observability of oceanic gyres. J. Phys. Oceanogr., 44, 24982523, doi:10.1175/JPO-D-13-0183.1.

  • Marchal, O., and Coauthors, 2002: Apparent long-term cooling of the sea surface in the northeast Atlantic and Mediterranean during the Holocene. Quat. Sci. Rev., 21, 455483, doi:10.1016/S0277-3791(01)00105-6.

    • Search Google Scholar
    • Export Citation
  • MARGO, 2009: Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nature, 2, 127132, doi:10.1038/ngeo411.

    • Search Google Scholar
    • Export Citation
  • Matsumoto, K., , and J. Lynch-Stieglitz, 2003: Persistence of Gulf Stream separation during the Last Glacial Period: Implications for current separation theories. J. Geophys. Res., 108, 3174, doi:10.1029/2001JC000861.

    • Search Google Scholar
    • Export Citation
  • Mehra, R. K., 1970: On the identification of variances and adaptive Kalman filtering. IEEE Trans. Autom. Control, 15, 175184, doi:10.1109/TAC.1970.1099422.

    • Search Google Scholar
    • Export Citation
  • Millero, F. J., 1978: Freezing point of seawater. UNESCO Tech. Papers in Marine Science 28, 29–31.

  • Mix, A., , E. Bard, , and R. Schneider, 2001: Environmental Processes of the Ice Age: Land, Oceans, and Glaciers (EPILOG). Quat. Sci. Rev., 20, 627657, doi:10.1016/S0277-3791(00)00145-1.

    • Search Google Scholar
    • Export Citation
  • Monterey, G., , and S. Levitus, 1997: Seasonal variability of mixed layer depth for the World Ocean. NOAA Atlas NESDIS 14, 96 pp.

  • Pérez-Brunius, P., , T. Rossby, , and D. R. Watts, 2004: Absolute transports of mass and temperature for the North Atlantic Current–subpolar front system. J. Phys. Oceanogr., 34, 18701883, doi:10.1175/1520-0485(2004)034<1870:ATOMAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pflaumann, U., and Coauthors, 2003: Glacial North Atlantic: Sea-surface conditions reconstructed by GLAMAP 2000. Paleoceanography, 18, 774, doi:10.1029/2002PA000774.

    • Search Google Scholar
    • Export Citation
  • Rauch, H. E., , F. Tung, , and C. T. Striebel, 1965: Maximum likelihood estimates of linear dynamic systems. AIAA J., 3, 14451450, doi:10.2514/3.3166.

    • Search Google Scholar
    • Export Citation
  • Read, J. F., , R. T. Pollard, , P. I. Miller, , and A. C. Dale, 2010: Circulation and variability of the North Atlantic Current in the vicinity of the Mid-Atlantic Ridge. Deep-Sea Res. I, 57, 307318, doi:10.1016/j.dsr.2009.11.010.

    • Search Google Scholar
    • Export Citation
  • Reverdin, G., , P. P. Niiler, , and H. Valdimarsson, 2003: North Atlantic Ocean surface currents. J. Geophys. Res., 108, 2-1–2-21, doi:10.1029/2001JC001020.

    • Search Google Scholar
    • Export Citation
  • Risien, C. M., , and D. B. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuickSCAT scatterometer data. J. Phys. Oceanogr., 38, 23792413, doi:10.1175/2008JPO3881.1.

    • Search Google Scholar
    • Export Citation
  • Rossby, T., 1996: The North Atlantic Current and surrounding waters: At the crossroads. Rev. Geophys., 34, 463481, doi:10.1029/96RG02214.

    • Search Google Scholar
    • Export Citation
  • Rossby, T., , and J. Nilsson, 2003: Current switching as the cause of rapid warming at the end of the Last Glacial Maximum and Younger Dryas. Geophys. Res. Lett., 30, 423, doi:10.1029/2002GL015423.

    • Search Google Scholar
    • Export Citation
  • Ruddiman, W. F., , and A. McIntyre, 1981: The mode and mechanism of the last deglaciation: Oceanic evidence. Quat. Res., 16, 125134, doi:10.1016/0033-5894(81)90040-5.

    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J., , and M. S. McCartney, 1993: On the North Atlantic circulation. Rev. Geophys., 31, 2949, doi:10.1029/92RG02583.

  • Schulz, M., 2002: The tempo of climate change during Dansgaard-Oeschger interstadials and its potential to affect the manifestation of the 1470-year climate cycle. Geophys. Res. Lett., 29, 2-1–2-4, doi:10.1029/2001GL013277.

    • Search Google Scholar
    • Export Citation
  • Schulz, M., , W. H. Berger, , M. Sarnthein, , and P. M. Grootes, 1999: Amplitude variations of 1470-year climate oscillations during the last 100,000 years linked to fluctuations of continental ice mass. Geophys. Res. Lett., 26, 33853388, doi:10.1029/1999GL006069.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , D. S. Battisti, , J. Yin, , N. Gordon, , N. Naik, , A. C. Clement, , and M. A. Cane, 2002: Is the Gulf Stream responsible for Europe’s mild winters? Quart. J. Roy. Meteor. Soc., 128, 25632586, doi:10.1256/qj.01.128.

    • Search Google Scholar
    • Export Citation
  • Stommel, H. M., 1993: A conjectural regulating mechanism for determining the thermohaline structure of the ocean mixed layer. J. Phys. Oceanogr., 23, 142150, doi:10.1175/1520-0485(1993)023<0142:ACRMFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stuiver, M., , and P. J. Reimer, 1993: Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon, 35, 215230.

    • Search Google Scholar
    • Export Citation
  • Stuiver, M., and Coauthors, 1998: Intcal98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon, 40, 10411083.

  • Sy, A., , U. Schauer, , and J. Meincke, 1992: The North Atlantic Current and its associated hydrographic structure over and eastwards of the mid-Atlantic Ridge. Deep-Sea Res., 39, 825853, doi:10.1016/0198-0149(92)90124-C.

    • Search Google Scholar
    • Export Citation
  • Waelbroeck, C., , L. Labeyrie, , J.-C. Duplessy, , J. Guiot, , M. Labracherie, , H. Leclaire, , and J. Duprat, 1998: Improving past sea surface temperature estimates based on planktonic fossil faunas. Paleoceanography, 13, 272283, doi:10.1029/98PA00071.

    • Search Google Scholar
    • Export Citation
  • Waelbroeck, C., , J.-C. Duplessy, , E. Michel, , L. Labeyrie, , D. Paillard, , and J. Duprat, 2001: The timing of the last deglaciation in North Atlantic climate records. Nature, 412, 724727, doi:10.1038/35089060.

    • Search Google Scholar
    • Export Citation
  • Waelbroeck, C., , L. Labeyrie, , D. Paillard, , and J. Duprat, 2014: Constraints on surface seawater oxygen isotopic change between the Last Glacial Maximum and the Late Holocene. Quat. Sci. Rev., 105, 102111, doi:10.1016/j.quascirev.2014.09.020.

    • Search Google Scholar
    • Export Citation
  • Walter, M., , and C. Mertens, 2013: Mid-depth mixing linked to North Atlantic Current variability. Geophys. Res. Lett., 40, 48694875, doi:10.1002/grl.50936.

    • Search Google Scholar
    • Export Citation
  • Welander, P., 1981: Mixed layers and fronts in simple ocean circulation models. J. Phys. Oceanogr., 11, 148152, doi:10.1175/1520-0485(1981)011<0148:MLAFIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • White, M. A., , and K. J. Heywood, 1995: Seasonal and interannual changes in the North Atlantic subpolar gyre from Geosat and TOPEX/POSEIDON altimetry. J. Geophys. Res., 100, 24 93124 941, doi:10.1029/95JC02123.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2006a: Abrupt climate change: An alternative view. Quat. Res., 65, 191203, doi:10.1016/j.yqres.2005.10.006.

  • Wunsch, C., 2006b: Discrete Inverse and State Estimation Problems. Cambridge University Press, 371 pp.

  • Wunsch, C., 2011: The decadal mean ocean circulation and Sverdrup balance. J. Mar. Res., 69, 417434, doi:10.1357/002224011798765303.

  • Zahn, R., 1994: Core correlations. Nature, 371, 289290, doi:10.1038/371289a0.

  • Zhang, X., , G. Lohmann, , and C. Purcell, 2014: Abrupt glacial climate shifts controlled by ice sheet changes. Nature, 512, 290294, doi:10.1038/nature13592.

    • Search Google Scholar
    • Export Citation
  • Zweng, M. M., and Coauthors, 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 39 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 96 96 32
PDF Downloads 58 58 14

On the Movements of the North Atlantic Subpolar Front in the Preinstrumental Past

View More View Less
  • 1 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • 2 Laboratoire des Sciences du Climat et de l’Environnement, Saclay, France
  • 3 Laboratoire de Physique des Océans, Brest, France
© Get Permissions
Restricted access

Abstract

Three sediment records of sea surface temperature (SST) are analyzed that originate from distant locations in the North Atlantic, have centennial-to-multicentennial resolution, are based on the same reconstruction method and chronological assumptions, and span the past 15 000 yr. Using recursive least squares techniques, an estimate of the time-dependent North Atlantic SST field over the last 15 kyr is sought that is consistent with both the SST records and a surface ocean circulation model, given estimates of their respective error (co)variances. Under the authors’ assumptions about data and model errors, it is found that the 10°C mixed layer isotherm, which approximately traces the modern Subpolar Front, would have moved by ~15° of latitude southward (northward) in the eastern North Atlantic at the onset (termination) of the Younger Dryas cold interval (YD), a result significant at the level of two standard deviations in the isotherm position. In contrast, meridional movements of the isotherm in the Newfoundland basin are estimated to be small and not significant. Thus, the isotherm would have pivoted twice around a region southeast of the Grand Banks, with a southwest–northeast orientation during the warm intervals of the Bølling–Allerød and the Holocene and a more zonal orientation and southerly position during the cold interval of the YD. This study provides an assessment of the significance of similar previous inferences and illustrates the potential of recursive least squares in paleoceanography.

Laboratoire des Sciences du Climat et de l’Environnement Contribution Number 5513.

Corresponding author address: Olivier Marchal, Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Quissett Campus, Woods Hole, MA 02543. E-mail: omarchal@whoi.edu

Abstract

Three sediment records of sea surface temperature (SST) are analyzed that originate from distant locations in the North Atlantic, have centennial-to-multicentennial resolution, are based on the same reconstruction method and chronological assumptions, and span the past 15 000 yr. Using recursive least squares techniques, an estimate of the time-dependent North Atlantic SST field over the last 15 kyr is sought that is consistent with both the SST records and a surface ocean circulation model, given estimates of their respective error (co)variances. Under the authors’ assumptions about data and model errors, it is found that the 10°C mixed layer isotherm, which approximately traces the modern Subpolar Front, would have moved by ~15° of latitude southward (northward) in the eastern North Atlantic at the onset (termination) of the Younger Dryas cold interval (YD), a result significant at the level of two standard deviations in the isotherm position. In contrast, meridional movements of the isotherm in the Newfoundland basin are estimated to be small and not significant. Thus, the isotherm would have pivoted twice around a region southeast of the Grand Banks, with a southwest–northeast orientation during the warm intervals of the Bølling–Allerød and the Holocene and a more zonal orientation and southerly position during the cold interval of the YD. This study provides an assessment of the significance of similar previous inferences and illustrates the potential of recursive least squares in paleoceanography.

Laboratoire des Sciences du Climat et de l’Environnement Contribution Number 5513.

Corresponding author address: Olivier Marchal, Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Quissett Campus, Woods Hole, MA 02543. E-mail: omarchal@whoi.edu
Save