• Bacmeister, J. T., , and G. L. Stephens, 2011: Spatial statistics of likely convective clouds in CloudSat data. J. Geophys. Res., 116, D04104, doi:10.1029/2010JD014444.

    • Search Google Scholar
    • Export Citation
  • Barnes, H. C., , and R. A. Houze Jr., 2013: The precipitating cloud population of the Madden–Julian oscillation over the Indian and west Pacific Oceans. J. Geophys. Res., 118, 69967023, doi:10.1002/jgrd.50375.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043, doi:10.1175/2011BAMS2856.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., , and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., , and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, doi:10.1175/2008JCLI2556.1.

    • Search Google Scholar
    • Export Citation
  • Chang, F.-L., , and Z. Li, 2005: A near-global climatology of single-layer and overlapped clouds and their optical properties retrieved from Terra/MODIS data using a new algorithm. J. Climate, 18, 47524771, doi:10.1175/JCLI3553.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, A., , and K.-M. Xu, 2011: Improved low-cloud simulation from a multiscale modeling framework with a third-order turbulence closure in its cloud-resolving model component. J. Geophys. Res., 116, D14101, doi:10.1029/2010JD015362.

    • Search Google Scholar
    • Export Citation
  • Cheng, A., , and K.-M. Xu, 2013a: Evaluating low-cloud simulation from an upgraded multiscale modeling framework model. Part III: Tropical and subtropical cloud transitions over the northern Pacific. J. Climate, 26, 57615781, doi:10.1175/JCLI-D-12-00650.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, A., , and K.-M. Xu, 2013b: Diurnal variability of low clouds in the southeast Pacific simulated by an upgraded multiscale modeling framework model. J. Geophys. Res., 118, 91919208, doi:10.1002/jgrd.50683.

    • Search Google Scholar
    • Export Citation
  • Cheng, A., , and K.-M. Xu, 2015: Improved low-cloud simulation from the Community Atmosphere Model with an advanced third-order turbulence closure. J. Climate, 28, 57375762, doi:10.1175/JCLI-D-14-00776.1.

    • Search Google Scholar
    • Export Citation
  • Dias, J., , S. N. Tulich, , and G. N. Kiladis, 2012: An object-based approach to assessing the organization of tropical convection. J. Atmos. Sci., 69, 24882504, doi:10.1175/JAS-D-11-0293.1.

    • Search Google Scholar
    • Export Citation
  • Eitzen, Z. A., , and K.-M. Xu, 2005: A statistical comparison of deep convective cloud objects observed by an Earth Observing System satellite and simulated by a cloud-resolving model. J. Geophys. Res., 110, D15S14, doi:10.1029/2004JD005086.

    • Search Google Scholar
    • Export Citation
  • Eitzen, Z. A., , and K.-M. Xu, 2008: Sensitivity of a large ensemble of tropical convective systems to changes in the thermodynamic and dynamic forcings. J. Atmos. Sci., 65, 17731794, doi:10.1175/2007JAS2446.1.

    • Search Google Scholar
    • Export Citation
  • Eitzen, Z. A., , K.-M. Xu, , and T. Wong, 2008: Statistical analyses of satellite cloud object data from CERES. Part V: Relationships between physical properties of boundary-layer clouds. J. Climate, 21, 66686688, doi:10.1175/2008JCLI2307.1.

    • Search Google Scholar
    • Export Citation
  • Eitzen, Z. A., , K.-M. Xu, , and T. Wong, 2009: Cloud and radiative characteristics of tropical deep convective systems in extended cloud objects from CERES observations. J. Climate, 22, 59836000, doi:10.1175/2009JCLI3038.1.

    • Search Google Scholar
    • Export Citation
  • Garay, M. J., , S. P. de Szoeke, , and C. M. Moroney, 2008: Comparison of marine stratocumulus cloud top heights in the southeastern Pacific retrieved from satellites with coincident ship-based observations. J. Geophys. Res., 113, D18204, doi:10.1029/2008JD009975.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., , L. W. Horowitz, , and H. Levy II, 2013: Cloud tuning in a coupled climate model: Impact on 20th century warming. Geophys. Res. Lett., 40, 22462251, doi:10.1002/grl.50232.

    • Search Google Scholar
    • Export Citation
  • Green, R., , and B. A. Wielicki, 1997: Convolution of imager cloud properties with CERES footprint point spread function. CERES Algorithm Theoretical Basis Doc. 4.4. [Available online at http://ceres.larc.nasa.gov/documents/ATBD/pdf/r2_2/ceres-atbd2.2-s4.4.pdf.]

  • Hahn, C. J., , W. B. Rossow, , and S. G. Warren, 2001: ISCCP cloud properties associated with standard cloud types identified in individual surface observations. J. Climate, 14, 1128, doi:10.1175/1520-0442(2001)014<0011:ICPAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., , and G. Tselioudis, 2003: Objective identification of cloud regimes in the tropical western Pacific. Geophys. Res. Lett., 30, 2082, doi:10.1029/2003GL018367.

    • Search Google Scholar
    • Export Citation
  • Kato, S., and Coauthors, 2011: Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties. J. Geophys. Res., 116, D19209, doi:10.1029/2011JD016050.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2012: Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. J. Climate, 25, 51905207, doi:10.1175/JCLI-D-11-00469.1.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , Y. Zhang, , M. D. Zelinka, , R. Pincus, , J. Boyle, , and P. J. Gleckler, 2013: Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. J. Geophys. Res., 118, 13291342, doi:10.1002/jgrd.50141.

    • Search Google Scholar
    • Export Citation
  • Lin, B., , B. A. Wielicki, , P. Minnis, , L. H. Chamber, , K.-M. Xu, , Y. Hu, , and A. Fan, 2006: The effect of environmental conditions on tropical deep convective systems observed from the TRMM satellite. J. Climate, 19, 57455761, doi:10.1175/JCLI3940.1.

    • Search Google Scholar
    • Export Citation
  • Lin, B., , K.-M. Xu, , P. Minnis, , B. A. Wielicki, , Y. Hu, , L. Chambers, , T.-F. Fan, , and W. Sun, 2007: Coincident occurrences of tropical individual cirrus clouds and deep convective systems derived from TRMM observations. Geophys. Res. Lett., 34, L14804, doi:10.1029/2007GL029768.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , and N. Manalo-Smith, 2005: Top-of-atmosphere direct radiative effect of aerosols over global oceans from merged CERES and MODIS observations. J. Climate, 18, 35063526, doi:10.1175/JCLI3504.1.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., , N. Manalo-Smith, , S. Kato, , W. F. Miller, , S. K. Gupta, , P. Minnis, , and B. A. Wielicki, 2003: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth’s Radiant Energy System instrument on the Tropical Rainfall Measuring Mission satellite. Part I: Methodology. J. Appl. Meteor., 42, 240265, doi:10.1175/1520-0450(2003)042<0240:ADMFTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., , K.-M. Xu, , B. A. Wielicki, , Z. A. Eitzen, , and T. Wong, 2007: Statistical analyses of satellite cloud object data from CERES. Part III: Comparison with cloud-resolving model simulations of tropical convective clouds. J. Atmos. Sci., 64, 762785, doi:10.1175/JAS3871.1.

    • Search Google Scholar
    • Export Citation
  • Machado, L., , W. Rossow, , R. Guedes, , and A. Walker, 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126, 16301654, doi:10.1175/1520-0493(1998)126<1630:LCVOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50-day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and Coauthors, 2012: Tuning the climate of a global model. J. Adv. Model. Earth Syst., 4, M00A01, doi:10.1029/2012MS000154.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400, doi:10.1109/TGRS.2011.2144601.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and A. Gettelman, 2008: A new two‐moment bulk stratiform cloud microphysics scheme in the NCAR Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, doi:10.1175/2008JCLI2105.1.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., , S. Platnick, , S. A. Ackerman, , R. S. Hemler, , and R. J. P. Hofmann, 2012: Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J. Climate, 25, 46994720, doi:10.1175/JCLI-D-11-00267.1.

    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., , A. R. Jongeward, , C.-Y. Hsu, , and G. L. Potter, 2012: Object-based evaluation of MERRA cloud physical properties and radiative fluxes during the 1998 El Niño–La Niña transition. J. Climate, 25, 73137327, doi:10.1175/JCLI-D-11-00724.1.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., , M. F. Khairoutdinov, , A. Arakawa, , and W. W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564, doi:10.1175/BAMS-84-11-1547.

    • Search Google Scholar
    • Export Citation
  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter8.pdf.]

  • Riley, E. M., , B. E. Mapes, , and S. N. Tulich, 2011: Clouds associated with the Madden–Julian oscillation: A new prospective from CloudSat. J. Atmos. Sci., 68, 30323051, doi:10.1175/JAS-D-11-030.1.

    • Search Google Scholar
    • Export Citation
  • Roca, R., , and V. Ramanathan, 2000: Scale dependence of monsoonal convective systems over the Indian Ocean. J. Climate, 13, 12861298, doi:10.1175/1520-0442(2000)013<1286:SDOMCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., , and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., , and G. A. Vecchi, 2011: The vertical distribution of cloud feedback in coupled ocean–atmosphere models. Geophys. Res. Lett., 38, L12704, doi:10.1029/2011GL047632.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Su, W., , J. Corbett, , Z. A. Eitzen, , and L. Liang, 2015: Next-generation angular distribution models for top-of-the-atmosphere radiative flux calculation from CERES instruments: Methodology. Atmos. Meas. Tech., 8, 611632, doi:10.5194/amt-8-611-2015.

    • Search Google Scholar
    • Export Citation
  • Vial, J., , J.-L. Dufresne, , and S. Bony, 2013: On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dyn., 41, 33393362, doi:10.1007/s00382-013-1725-9.

    • Search Google Scholar
    • Export Citation
  • Wall, C., , C. Liu, , and E. Zipser, 2013: A climatology of tropical congestus using CloudSat. J. Geophys. Res. Atmos., 118, 64786492, doi:10.1002/jgrd.50455.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., , and R. M. Welch, 1986: Cumulus cloud properties derived using Landsat satellite data. J. Climate Appl. Meteor., 25, 261276, doi:10.1175/1520-0450(1986)025<0261:CCPDUL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., , B. R. Barkstrom, , E. F. Harrison, , R. B. Lee, , G. L. Smith, , and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and Coauthors, 2010: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111229, doi:10.1175/2010BAMS3009.1.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., 2006: Using the bootstrap method for a statistical significance test of differences between summary histograms. Mon. Wea. Rev., 134, 14421453, doi:10.1175/MWR3133.1.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., 2009: Evaluation of cloud physical properties of ECMWF analysis and re-analysis against CERES tropical deep convective cloud object observations. Mon. Wea. Rev., 137, 207223, doi:10.1175/2008MWR2633.1.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., , and A. Cheng, 2013a: Evaluating low-cloud simulation from an upgraded multiscale modeling framework model. Part I: Sensitivity to spatial resolution and climatology. J. Climate, 26, 57175740, doi:10.1175/JCLI-D-12-00200.1.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., , and A. Cheng, 2013b: Evaluating low-cloud simulation from an upgraded multiscale modeling framework model. Part II: Seasonal variations over the eastern Pacific. J. Climate, 26, 57415760, doi:10.1175/JCLI-D-12-00276.1.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., , T. Wong, , B. A. Wielicki, , L. Parker, , and Z. A. Eitzen, 2005: Statistical analyses of satellite cloud object data from CERES. Part I: Methodology and preliminary results of 1998 El Niño/2000 La Niña. J. Climate, 18, 24972514, doi:10.1175/JCLI3418.1.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., , T. Wong, , B. A. Wielicki, , L. Parker, , B. Lin, , Z. A. Eitzen, , and M. Branson, 2007: Statistical analyses of satellite cloud object data from CERES. Part II: Tropical convective cloud objects during 1998 El Niño and evidence for supporting the fixed anvil temperature hypothesis. J. Climate, 20, 819842, doi:10.1175/JCLI4069.1.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., , T. Wong, , B. A. Wielicki, , and L. Parker, 2008: Statistical analyses of satellite cloud object data from CERES. Part IV: Boundary-layer cloud object during 1998 El Niño. J. Climate, 21, 15001522, doi:10.1175/2007JCLI1710.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 20 20 5
PDF Downloads 14 14 5

Cloud Object Analysis of CERES Aqua Observations of Tropical and Subtropical Cloud Regimes: Four-Year Climatology

View More View Less
  • 1 Climate Science Branch, NASA Langley Research Center, Hampton, Virginia
  • 2 Science Systems and Applications, Inc., Hampton, Virginia
  • 3 Climate Science Branch, NASA Langley Research Center, Hampton, Virginia
© Get Permissions
Restricted access

Abstract

Four distinct types of cloud objects—tropical deep convection, boundary layer cumulus, stratocumulus, and overcast stratus—were previously identified from CERES Tropical Rainfall Measuring Mission (TRMM) data. Six additional types of cloud objects—cirrus, cirrocumulus, cirrostratus, altocumulus, transitional altocumulus, and solid altocumulus—are identified from CERES Aqua satellite data in this study. The selection criteria for the 10 cloud object types are based on CERES footprint cloud fraction and cloud-top pressure, as well as cloud optical depth for the high-cloud types. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The data are analyzed according to cloud object types, sizes, regions, and associated environmental conditions. The frequency of occurrence and probability density functions (PDFs) of selected physical properties are produced for the July 2006–June 2010 period. It is found that deep convective and boundary layer types dominate the total population while the six new types other than cirrostratus do not contribute much in the tropics and subtropics. There are pronounced differences in the size spectrum between the types, with the largest ones being of deep convective type and with stratocumulus and overcast types over the ocean basins off west coasts. The summary PDFs of radiative and cloud physical properties differ greatly among the size categories. For boundary layer cloud types, the differences come primarily from the locations of cloud objects: for example, coasts versus open oceans. They can be explained by considerable variations in large-scale environmental conditions with cloud object size, which will be further qualified in future studies.

Corresponding author address: Dr. Kuan-Man Xu, NASA Langley Research Center, Climate Science Branch, Mail Stop 420, Hampton, VA 23681. E-mail: kuan-man.xu@nasa.gov

Abstract

Four distinct types of cloud objects—tropical deep convection, boundary layer cumulus, stratocumulus, and overcast stratus—were previously identified from CERES Tropical Rainfall Measuring Mission (TRMM) data. Six additional types of cloud objects—cirrus, cirrocumulus, cirrostratus, altocumulus, transitional altocumulus, and solid altocumulus—are identified from CERES Aqua satellite data in this study. The selection criteria for the 10 cloud object types are based on CERES footprint cloud fraction and cloud-top pressure, as well as cloud optical depth for the high-cloud types. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The data are analyzed according to cloud object types, sizes, regions, and associated environmental conditions. The frequency of occurrence and probability density functions (PDFs) of selected physical properties are produced for the July 2006–June 2010 period. It is found that deep convective and boundary layer types dominate the total population while the six new types other than cirrostratus do not contribute much in the tropics and subtropics. There are pronounced differences in the size spectrum between the types, with the largest ones being of deep convective type and with stratocumulus and overcast types over the ocean basins off west coasts. The summary PDFs of radiative and cloud physical properties differ greatly among the size categories. For boundary layer cloud types, the differences come primarily from the locations of cloud objects: for example, coasts versus open oceans. They can be explained by considerable variations in large-scale environmental conditions with cloud object size, which will be further qualified in future studies.

Corresponding author address: Dr. Kuan-Man Xu, NASA Langley Research Center, Climate Science Branch, Mail Stop 420, Hampton, VA 23681. E-mail: kuan-man.xu@nasa.gov
Save