• Ashok, K., , S. Behera, , S. Rao, , H. Weng, , and T. Yamagata, 2007: El Nino Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Chen, L., , and R. Wu, 2000: Inter-annual and decadal variations of snow cover over Qinghai-Xizang Plateau and their relationship to summer monsoon rainfalls in China. Adv. Atmos. Sci., 17, 1830, doi:10.1007/s00376-000-0040-7.

    • Search Google Scholar
    • Export Citation
  • De Jong, S., , and A. Phatak, 1997: Partial least squares regression. Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modeling, S. Van Huffel, Ed., SIAM, 25–36.

  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Déqué, M., 2001: Seasonal predictability of tropical rainfall: Probabilistic formulation and validation. Tellus, 53A, 500512, doi:10.1111/j.1600-0870.2001.00500.x.

    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., 1994: Monsoons over China. Springer, 432 pp.

  • Douville, H., , and J.-F. Royer, 1996: Sensitivity of the Asian summer monsoon to an anomalous Eurasian snow cover within the Météo-France GCM. Climate Dyn., 12, 449466, doi:10.1007/BF02346818.

    • Search Google Scholar
    • Export Citation
  • Fan, K., , Y. Liu, , and H. P. Chen, 2012: Improving the prediction of the East Asian summer monsoon: New approaches. Wea. Forecasting, 27, 10171030, doi:10.1175/WAF-D-11-00092.1.

    • Search Google Scholar
    • Export Citation
  • Gong, D., , and S. Wang, 1999: Impacts of ENSO on rainfall of global land and China precipitation. Chin. Sci. Bull., 44, 852856, doi:10.1007/BF02885036.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., , J. J. Morcrette, , C. Jakob, , A. C. M. Beljaars, , and T. Stockdale, 2000: Revision of convection, radiation and cloud schemes in the ECMWF Integrated Forecasting System. Quart. J. Roy. Meteor. Soc., 126, 16851710, doi:10.1002/qj.49712656607.

    • Search Google Scholar
    • Export Citation
  • Gu, W., , C. Y. Li, , W. J. Li, , W. Zhou, , and J. C. L. Chan, 2009a: Interdecadal unstationary relationship between NAO and east China’s summer precipitation patterns. Geophys. Res. Lett., 36, L13702, doi:10.1029/2009GL038843.

    • Search Google Scholar
    • Export Citation
  • Gu, W., , C. Y. Li, , X. Wang, , W. Zhou, , and W. J. Li, 2009b: Linkage between mei-yu precipitation and North Atlantic SST on the decadal timescale. Adv. Atmos. Sci., 26, 101108, doi:10.1007/s00376-009-0101-5.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., and Coauthors, 2006: Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J. Climate, 19, 39523972, doi:10.1175/JCLI3827.1.

    • Search Google Scholar
    • Export Citation
  • Kalela-Brundin, M., 1999: Climatic information from tree-rings of Pinus sylvestris L. and a reconstruction of summer temperatures back to AD 1500 in Femundsmarka, eastern Norway, using partial least squares regression (PLS) analysis. Holocene, 9, 5977, doi:10.1191/095968399678118795.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., , W. Ebisuzaki, , J. Woollen, , S.-K. Yang, , J. J. Hnilo, , M. Fiorino, , and G. L. Potter, 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kwon, M., , J.-G. Jhun, , and K.-J. Ha, 2007: Decadal change in East Asian summer monsoon circulation in the mid-1990s. Geophys. Res. Lett., 34, L21706, doi:10.1029/2007GL031977.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , K.-M. Kim, , and S. Yang, 2000: Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Climate, 13, 24612482, doi:10.1175/1520-0442(2000)013<2461:DABFCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, S. S., , J.-Y. Lee, , K.-J. Ha, , B. Wang, , and J. K. E. Schemm, 2011: Deficiencies and possibilities for long-lead coupled climate prediction of the western North Pacific–East Asian summer monsoon. Climate Dyn., 36, 11731188, doi:10.1007/s00382-010-0832-0.

    • Search Google Scholar
    • Export Citation
  • Li, F., , and Q. Zeng, 2008: Statistical prediction of East Asian summer monsoon rainfall based on SST and sea ice concentration. J. Meteor. Soc. Japan, 86, 237243, doi:10.2151/jmsj.86.237.

    • Search Google Scholar
    • Export Citation
  • Liu, X., , and Y. Wang, 2011: Contrasting impacts of spring thermal conditions over Tibetan Plateau on late-spring to early-summer precipitation in southeast China. Atmos. Sci. Lett., 12, 309315, doi:10.1002/asl.343.

    • Search Google Scholar
    • Export Citation
  • Luo, J. J., , S. Masson, , S. Behera, , S. Shingu, , and T. Yamagata, 2005: Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecast. J. Climate, 18, 44744497, doi:10.1175/JCLI3526.1.

    • Search Google Scholar
    • Export Citation
  • Madec, G., , P. Delecluse, , M. Imbrad, , and C. Levy, 1998: OPA version 8.1, Ocean general circulation model reference manual. Note du Pole de modélisation 11, IPSL, 91 pp.

  • Marsland, S. J., , H. Haak, , J. H. Jungclaus, , M. Latif, , and F. Röske, 2003: The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell., 5, 91127, doi:10.1016/S1463-5003(02)00015-X.

    • Search Google Scholar
    • Export Citation
  • Martens, H., , and T. Naes, 1989: Multivariate Calibration. Wiley, 419 pp.

  • McIntosh, A. R., , and N. J. Lobaugh, 2004: Partial least squares analysis of neuroimaging data: Applications and advances. Neuroimage, 23, S250S263, doi:10.1016/j.neuroimage.2004.07.020.

    • Search Google Scholar
    • Export Citation
  • McIntosh, P. C., , A. J. Ash, , and M. Stafford Smith, 2005: From oceans to farms: The value of a novel statistical climate forecast for agricultural management. J. Climate, 18, 42874302, doi:10.1175/JCLI3515.1.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., and Coauthors, 2011: The new ECMWF Seasonal Forecast System (system 4). ECMWF Tech. Memo. 656, 49 pp.

  • Namias, J., 1962: Influence of abnormal heat sources and sinks on atmospheric behavior. Proc. Symp. on Numerical Weather Prediction, Tokyo, Japan, Meteorological Society of Japan, 615–627.

  • Namias, J., 1985: Some empirical evidence for the influence of snow cover on temperature and precipitation. Mon. Wea. Rev., 113, 15421553, doi:10.1175/1520-0493(1985)113<1542:SEEFTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., , and Z.-Z. Hu, 1996: Summer climate variability in China and its association with 500-hPa height and tropical convection. J. Meteor. Soc. Japan, 74, 425445.

    • Search Google Scholar
    • Export Citation
  • North, G. R., , T. L. Bell, , R. F. Cahalan, , and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Phatak, A., , and S. De Jong, 1997: The geometry of partial least squares. J. Chemom., 11, 311338, doi:10.1002/(SICI)1099-128X(199707)11:4<311::AID-CEM478>3.0.CO;2-4.

    • Search Google Scholar
    • Export Citation
  • Qian, Y.-F., , Y.-Q. Zheng, , Y. Zhang, , and M.-Q. Miao, 2003: Response of China’s summer monsoon climate to snow anomaly over the Tibetan Plateau. Int. J. Climatol., 23, 593613, doi:10.1002/joc.901.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM4: Model description and simulation of present-day climate. Max Planck Institut für Meteorologie Rep. 218, 90 pp.

  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Shukla, J., 2007: Monsoon mysteries. Science, 318, 204205, doi:10.1126/science.1150045.

  • Smith, T. M., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Smoliak, B. V., , J. M. Wallace, , M. T. Stoelinga, , and T. P. Mitchell, 2010: Application of partial least squares regression to the diagnosis of year-to-year variations in Pacific Northwest snowpack and Atlantic hurricanes. Geophys. Res. Lett., 37, L03801, doi:10.1029/2009GL041478.

    • Search Google Scholar
    • Export Citation
  • Smoliak, B. V., , J. M. Wallace, , P. Lin, , and Q. Fu, 2015: Dynamical adjustment of the Northern Hemisphere surface air temperature field: Methodology and application to observations. J. Climate, 28, 16131629, doi:10.1175/JCLI-D-14-00111.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., , X. B. Qu, , and J. Z. Zhang, 2011: Analysis on the events and characters of meteorological disasters in China. Wea. Forecasting Rev., 3 (1), 711.

    • Search Google Scholar
    • Export Citation
  • Tan, Y., , L. Shi, , W. Tong, , G. T. G. Hwang, , and C. Wang, 2004: Multi-class tumor classification by discriminant partial least squares using microarray gene expression data and assessment of classification models. Comput. Biol. Chem., 28, 235243, doi:10.1016/j.compbiolchem.2004.05.002.

    • Search Google Scholar
    • Export Citation
  • Tao, S., , and L. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krisnamurti, Eds., Oxford University Press, 60–92.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S., 2007: The role of terrestrial snow cover in the climate system. Climate Dyn., 29, 7388, doi:10.1007/s00382-007-0226-0.

  • Wang, B., , R. Wu, , and X. Fu, 2000: Pacific–East Asia teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , J.-Y. Lee, , I.-S. Kang, , J. Shukla, , S. N. Hameed, , and C.-K. Park, 2007: Coupled predictability of seasonal tropical precipitation. CLIVAR Exchanges, No. 12, International CLIVAR Project Office, Southampton, United Kingdom, 17–18.

  • Wang, B., and Coauthors, 2008: How accurately do coupled climate models predict the leading modes of Asian-Australian monsoon interannual variability? Climate Dyn., 30, 605619, doi:10.1007/s00382-007-0310-5.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2009a: Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retroperspective seasonal prediction (1980–2004). Climate Dyn., 33, 93117, doi:10.1007/s00382-008-0460-0.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , J. Liu, , J. Yang, , T. Zhou, , and Z. Wu, 2009b: Distinct principal modes of early and late summer rainfall anomalies in East Asia. J. Climate, 22, 38643875, doi:10.1175/2009JCLI2850.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , J.-Y. Lee, , and B. Xiang, 2015a: Asian summer monsoon rainfall predictability: A predictable mode analysis. Climate Dyn., 44, 6174, doi:10.1007/s00382-014-2218-1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , B. Xiang, , J. Li, , P. J. Webster, , M. Rajeevan, , J. Liu, , and K.-J. Ha, 2015b: Rethinking Indian monsoon rainfall prediction in the context of the recent global warming. Nature Commun., 6, 7154, doi:10.1038/ncomms8154.

    • Search Google Scholar
    • Export Citation
  • Wold, H., 1966: Estimation of principal components and related models by iterative least squares. Multivariate Analysis, P. R. Krishnaiah, Ed., Academic Press, 391–420.

    • Search Google Scholar
    • Export Citation
  • Wu, B., , R. Zhang, , and B. Wang, 2009a: On the association between spring Arctic sea ice concentration and Chinese summer rainfall: A further study. Adv. Atmos. Sci., 26, 666678, doi:10.1007/s00376-009-9009-3.

    • Search Google Scholar
    • Export Citation
  • Wu, B., , R. Zhang, , B. Wang, , and R. D’Arrigo, 2009b: On the association between spring Arctic sea ice concentration and Chinese summer rainfall. Geophys. Res. Lett., 36, L09501, doi:10.1029/2009GL037299.

    • Search Google Scholar
    • Export Citation
  • Wu, R., , and B. Wang, 2002: A contrast of the East Asian summer monsoon–ENSO relationship between 1962–77 and 1978–93. J. Climate, 15, 32663279, doi:10.1175/1520-0442(2002)015<3266:ACOTEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, T.-W., , and Z.-A. Qian, 2003: The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigation. J. Climate, 16, 20382051, doi:10.1175/1520-0442(2003)016<2038:TRBTTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., , B. Wang, , J. Li, , and F. F. Jin, 2009: An empirical seasonal prediction of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, doi:10.1029/2009JD011733.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., , H. Lin, , Y. Li, , and Y. Tang, 2013: Seasonal prediction of killing-frost frequency in south-central Canada during the cool/overwintering-crop growing season. J. Appl. Meteor. Climatol., 52, 102110, doi:10.1175/JAMC-D-12-059.1.

    • Search Google Scholar
    • Export Citation
  • Xing, W., , B. Wang, , and S.-Y. Yim, 2014: Peak-summer East Asian rainfall predictability and prediction. Part I: Southeast Asia. Climate Dyn., 113, doi:10.1007/s00382-014-2385-0.

    • Search Google Scholar
    • Export Citation
  • Yang, S., , and L. Xu, 1994: Linkage between Eurasian winter snow cover and regional Chinese summer rainfall. Int. J. Climatol., 14, 739750, doi:10.1002/joc.3370140704.

    • Search Google Scholar
    • Export Citation
  • Yim, S.-Y., , B. Wang, , and W. Xing, 2014: Prediction of early summer rainfall over South China by a physical-empirical model. Climate Dyn., 43, 18831891, doi:10.1007/s00382-013-2014-3.

    • Search Google Scholar
    • Export Citation
  • Yuan, Y., , H. Yang, , W. Zhou, , and C. Li, 2008a: Influences of the Indian Ocean dipole on the Asian summer monsoon in the following year. Int. J. Climatol., 28, 18491859, doi:10.1002/joc.1678.

    • Search Google Scholar
    • Export Citation
  • Yuan, Y., , W. Zhou, , J. C. L. Chan, , and C. Li, 2008b: Impacts of the basin-wide Indian Ocean SSTA on the South China Sea summer monsoon onset. Int. J. Climatol., 28, 15791587, doi:10.1002/joc.1671.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., , J. Qin, , and Y. Li, 2011: Climate background of cold and wet winter in southern China: Part I. Observational analysis. Climate Dyn., 37, 23352354, doi:10.1007/s00382-011-1022-4.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., , C.-Y. Xu, , Z. Zhang, , Y. D. Chen, , and C.-L. Liu, 2009: Spatial and temporal variability of precipitation over China, 1951–2005. Theor. Appl. Climatol., 95, 5368, doi:10.1007/s00704-007-0375-4.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., , T. Li, , and B. Wang, 2004: Decadal change of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the East Asian summer monsoon. J. Climate, 17, 27802793, doi:10.1175/1520-0442(2004)017<2780:DCOTSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhao, P., , Z. Zhou, , and J. Liu, 2007: Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer monsoon rainfall: An observational investigation. J. Climate, 20, 39423955, doi:10.1175/JCLI4205.1.

    • Search Google Scholar
    • Export Citation
  • Zhong, A., , H. H. Hendon, , and O. Alves, 2005: Indian Ocean variability and its association with ENSO in a global coupled model. J. Climate, 18, 36343649, doi:10.1175/JCLI3493.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 46 46 12
PDF Downloads 31 31 8

Long-Lead Seasonal Prediction of China Summer Rainfall Using an EOF–PLS Regression-Based Methodology

View More View Less
  • 1 College of Oceanic and Atmospheric Sciences, Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China
  • 2 Department of Atmospheric Sciences, and International Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii, and Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, China
  • 3 Korea Meteorological Administration, Seoul, South Korea
© Get Permissions
Restricted access

Abstract

Considerable year-to-year variability of summer rainfall exposes China to threats of frequent droughts and floods. Objective prediction of the summer rainfall anomaly pattern turns out to be very challenging. As shown in the present study, the contemporary state-of-the-art dynamical models’ 1-month-lead prediction of China summer rainfall (CSR) anomalies has insignificant skills. Thus, there is an urgent need to explore other ways to improve CSR prediction. The present study proposes a combined empirical orthogonal function (EOF)–partial least squares (PLS) regression method to offer a potential long-lead objective prediction of spatial distribution of CSR anomalies. The essence of the methodology is to use PLS regression to predict the principal component (PC) of the first five leading EOF modes of CSR. The preceding December–January mean surface temperature field [ST; i.e., SST over ocean and 2-m air temperature (T2m) over land] is selected as the predictor field for all five PCs because SST and snow cover, which is reflected by 2-m air temperature, are the most important factors that affect CSR and because the correlation between each mode and ST during winter is higher than in spring. The 4-month-lead forecast models are established by using the data from 1979 to 2004. A 9-yr independent forward-rolling prediction is made for the latest 9 yr (2005–13) as a strict forecast validation. The pattern correlation coefficient skill (0.32) between the observed and the 4-month-lead predicted patterns during the independent forecast period of 2005–13 is significantly higher than the dynamic models’ 1-month-lead hindcast skill (0.04), which indicates that the EOF–PLS regression is a useful tool for improving the current seasonal rainfall prediction. Issues related to the EOF–PLS method are also discussed.

School of Ocean and Earth Science and Technology Publication Number 9563, International Pacific Research Center Publication Number 1165, and Earth System Modeling Center Publication Number 085.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0016.s1.

Corresponding author address: Wen Xing, Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Marine Meteorology, 238 Songling Road, Qing Dao 266100, China. E-mail: xingwen1022@gmail.com

Abstract

Considerable year-to-year variability of summer rainfall exposes China to threats of frequent droughts and floods. Objective prediction of the summer rainfall anomaly pattern turns out to be very challenging. As shown in the present study, the contemporary state-of-the-art dynamical models’ 1-month-lead prediction of China summer rainfall (CSR) anomalies has insignificant skills. Thus, there is an urgent need to explore other ways to improve CSR prediction. The present study proposes a combined empirical orthogonal function (EOF)–partial least squares (PLS) regression method to offer a potential long-lead objective prediction of spatial distribution of CSR anomalies. The essence of the methodology is to use PLS regression to predict the principal component (PC) of the first five leading EOF modes of CSR. The preceding December–January mean surface temperature field [ST; i.e., SST over ocean and 2-m air temperature (T2m) over land] is selected as the predictor field for all five PCs because SST and snow cover, which is reflected by 2-m air temperature, are the most important factors that affect CSR and because the correlation between each mode and ST during winter is higher than in spring. The 4-month-lead forecast models are established by using the data from 1979 to 2004. A 9-yr independent forward-rolling prediction is made for the latest 9 yr (2005–13) as a strict forecast validation. The pattern correlation coefficient skill (0.32) between the observed and the 4-month-lead predicted patterns during the independent forecast period of 2005–13 is significantly higher than the dynamic models’ 1-month-lead hindcast skill (0.04), which indicates that the EOF–PLS regression is a useful tool for improving the current seasonal rainfall prediction. Issues related to the EOF–PLS method are also discussed.

School of Ocean and Earth Science and Technology Publication Number 9563, International Pacific Research Center Publication Number 1165, and Earth System Modeling Center Publication Number 085.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0016.s1.

Corresponding author address: Wen Xing, Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Marine Meteorology, 238 Songling Road, Qing Dao 266100, China. E-mail: xingwen1022@gmail.com

Supplementary Materials

    • Supplemental Materials (DOCX 812.78 KB)
Save