Composite Analysis of the Effects of ENSO Events on Antarctica

Lee J. Welhouse Antarctic Meteorological Research Center, Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Lee J. Welhouse in
Current site
Google Scholar
PubMed
Close
,
Matthew A. Lazzara Antarctic Meteorological Research Center, Space Science and Engineering Center, University of Wisconsin–Madison, and Department of Physical Sciences, School of Arts and Sciences, Madison Area Technical College, Madison, Wisconsin

Search for other papers by Matthew A. Lazzara in
Current site
Google Scholar
PubMed
Close
,
Linda M. Keller Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Linda M. Keller in
Current site
Google Scholar
PubMed
Close
,
Gregory J. Tripoli Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Gregory J. Tripoli in
Current site
Google Scholar
PubMed
Close
, and
Matthew H. Hitchman Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Matthew H. Hitchman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous investigations of the relationship between El Niño–Southern Oscillation (ENSO) and the Antarctic climate have focused on regions that are impacted by both El Niño and La Niña, which favors analysis over the Amundsen and Bellingshausen Seas (ABS). Here, 35 yr (1979–2013) of European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) data are analyzed to investigate the relationship between ENSO and Antarctica for each season using a compositing method that includes nine El Niño and nine La Niña periods. Composites of 2-m temperature (T2m), sea level pressure (SLP), 500-hPa geopotential height, sea surface temperatures (SST), and 300-hPa geopotential height anomalies were calculated separately for El Niño minus neutral and La Niña minus neutral conditions, to provide an analysis of features associated with each phase of ENSO. These anomaly patterns can differ in important ways from El Niño minus La Niña composites, which may be expected from the geographical shift in tropical deep convection and associated pattern of planetary wave propagation into the Southern Hemisphere. The primary new result is the robust signal, during La Niña, of cooling over East Antarctica. This cooling is found from December to August. The link between the southern annular mode (SAM) and this cooling is explored. Both El Niño and La Niña experience the weakest signal during austral autumn. The peak signal for La Niña occurs during austral summer, while El Niño is found to peak during austral spring.

Denotes Open Access content.

Corresponding author address: Lee J. Welhouse, Space Science and Engineering Center, 1225 West Dayton St., Madison, WI 53706. E-mail: lee.welhouse@ssec.wisc.edu

This article is included in the Connecting the Tropics to the Polar Regions Special Collection.

Abstract

Previous investigations of the relationship between El Niño–Southern Oscillation (ENSO) and the Antarctic climate have focused on regions that are impacted by both El Niño and La Niña, which favors analysis over the Amundsen and Bellingshausen Seas (ABS). Here, 35 yr (1979–2013) of European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) data are analyzed to investigate the relationship between ENSO and Antarctica for each season using a compositing method that includes nine El Niño and nine La Niña periods. Composites of 2-m temperature (T2m), sea level pressure (SLP), 500-hPa geopotential height, sea surface temperatures (SST), and 300-hPa geopotential height anomalies were calculated separately for El Niño minus neutral and La Niña minus neutral conditions, to provide an analysis of features associated with each phase of ENSO. These anomaly patterns can differ in important ways from El Niño minus La Niña composites, which may be expected from the geographical shift in tropical deep convection and associated pattern of planetary wave propagation into the Southern Hemisphere. The primary new result is the robust signal, during La Niña, of cooling over East Antarctica. This cooling is found from December to August. The link between the southern annular mode (SAM) and this cooling is explored. Both El Niño and La Niña experience the weakest signal during austral autumn. The peak signal for La Niña occurs during austral summer, while El Niño is found to peak during austral spring.

Denotes Open Access content.

Corresponding author address: Lee J. Welhouse, Space Science and Engineering Center, 1225 West Dayton St., Madison, WI 53706. E-mail: lee.welhouse@ssec.wisc.edu

This article is included in the Connecting the Tropics to the Polar Regions Special Collection.

Save
  • Bracegirdle, T. J., and G. J. Marshall, 2012: The reliability of Antarctic tropospheric pressure and temperature in the latest global reanalyses. J. Climate, 25, 71387146, doi:10.1175/JCLI-D-11-00685.1.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and R. L. Fogt, 2004: Strong trends in the skill of the ERA-40 and NCEP–NCAR reanalysis in the high and middle latitudes of the Southern Hemisphere, 1958–2001. J. Climate, 17, 46034619, doi:10.1175/3241.1.

    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., and D. W. J. Thompson, 2008: Observations of large-scale ocean atmosphere interaction in the Southern Hemisphere. J. Climate, 21, 12441259, doi:10.1175/2007JCLI1809.1.

    • Search Google Scholar
    • Export Citation
  • Clem, K. R., and R. L. Fogt, 2013: Varying roles of ENSO and SAM on the Antarctic Peninsula climate in austral spring. J. Geophys. Res. Atmos., 118, 11 48111 492, doi:10.1002/jgrd.50860.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and J. Wallace, 1990: Large-scale atmospheric circulation features of warm and cold episodes in the tropical Pacific. J. Climate, 3, 12541281, doi:10.1175/1520-0442(1990)003<1254:LSACFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., and V. Markgraf, 1992: El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation. Cambridge University Press, 476 pp.

  • Fogt, R. L., and D. H. Bromwich, 2006: Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the southern annular mode. J. Climate, 19, 979997, doi:10.1175/JCLI3671.1.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., D. H. Bromwich, and K. M. Hines, 2011: Understanding the SAM influence on the South Pacific ENSO teleconnection. Climate Dyn., 36, 15551576, doi:10.1007/s00382-010-0905-0.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., J. A. Renwick, M. J. Salinger, and A. B. Mullan, 2002: Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific Convergence Zone. Geophys. Res. Lett., 29, doi:10.1029/2001GL014201.

    • Search Google Scholar
    • Export Citation
  • Frauen, C., D. Dommenget, N. Tyrrell, M. Rezny, and S. Wales, 2014: Analysis of the nonlinearity of El Niño–Southern Oscillation teleconnections. J. Climate, 27, 62256244, doi:10.1175/JCLI-D-13-00757.1.

    • Search Google Scholar
    • Export Citation
  • Harangozo, S. A., 2000: A search for ENSO teleconnections in the west Antarctic Peninsula climate in Austral winter. Int. J. Climatol., 20, 663679, doi:10.1002/(SICI)1097-0088(200005)20:6<663::AID-JOC493>3.0.CO;2-I.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., S. W. Lyons, and S. Nigam, 1989: Transients and the extratropical response to El Niño. J. Atmos. Sci., 46, 163174, doi:10.1175/1520-0469(1989)046<0163:TATERT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houseago-Stokes, R. E., and G. R. McGregor, 2000: Spatial and temporal patterns linking southern low and high latitudes during South Pacific warm and cold events. Int. J. Climatol., 20, 793801, doi:10.1002/1097-0088(20000615)20:7<793::AID-JOC502>3.0.CO;2-9.

    • Search Google Scholar
    • Export Citation
  • Itterly, K. F., and P. C. Taylor, 2014: Evaluation of the tropical TOA flux diurnal cycle in MERRA and ERA-Interim retrospective analyses. J. Climate, 27, 47814796, doi:10.1175/JCLI-D-13-00737.1.

    • Search Google Scholar
    • Export Citation
  • Jin, D., and B. P. Kirtman, 2009: Why the Southern Hemisphere ENSO responses lead ENSO. J. Geophys. Res., 114, D23101, doi:10.1029/2009JD012657.

    • Search Google Scholar
    • Export Citation
  • Jin, D., and B. P. Kirtman, 2010: How the annual cycle affects the extratropical response to ENSO. J. Geophys. Res., 115, D06102, doi:10.1029/2009JD012660.

    • Search Google Scholar
    • Export Citation
  • Jones, P. D., and D. H. Lister, 2015: Antarctic near-surface air temperatures compared with ERA-Interim values since 1979. Int. J. Climatol., 35, 13541366, doi:10.1002/joc.4061.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Climate, 2, 12391252, doi:10.1175/1520-0442(1989)002<1239:SHCFAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lachlan-Cope, T., and W. Connolley, 2006: Teleconnections between the tropical Pacific and the Amundsen–Bellinghausens Sea: Role of the El Niño/Southern Oscillation. J. Geophys. Res., 111, D23101, doi:10.1029/2005JD006386.

    • Search Google Scholar
    • Export Citation
  • Lazzara, M. A., G. A. Weidner, L. M. Keller, J. E. Thom, and J. J. Cassano, 2012: Antarctic Automatic Weather Station Program: 30 years of polar observations. Bull. Amer. Meteor. Soc., 93, 15191537, doi:10.1175/BAMS-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and D. W. J. Thompson, 2006: Observed relationships between the El Niño/Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276287, doi:10.1175/JCLI3617.1.

    • Search Google Scholar
    • Export Citation
  • Li, X., E. P. Gerber, D. M. Holland, and C. Yoo, 2015: A Rossby wave bridge from the tropical Atlantic to West Antarctica. J. Climate, 28, 22562273, doi:10.1175/JCLI-D-14-00450.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the Southern Annular Mode from observations and reanalysis. J. Climate, 16, 41344143, doi:10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and G. H. White, 1985: Teleconnections in the Southern Hemisphere. Mon. Wea. Rev., 113, 2237, doi:10.1175/1520-0493(1985)113<0022:TITSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and W. Higgins, 1998: The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Wea. Rev., 126, 15811596, doi:10.1175/1520-0493(1998)126<1581:TPSAMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • NOAA/Climate Prediction Center, 2015: Oceanic Niño Index ERSST.v4b.NOAA/National Climatic Data Center, Subset used: January 1979–December 2013, accessed January 2015. [Available online at http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears_ERSSTv3b.shtml.]

  • Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843, doi:10.1175/2010JCLI3592.1.

    • Search Google Scholar
    • Export Citation
  • Philander, S. G., and E. M. Rasmusson, 1985: The southern oscillation and El Niño. Advances in Geophysics, Vol. 28, Academic Press, 197215, doi:10.1016/S0065-2687(08)60224-1.

    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., Y. Okumura, and C. Deser, 2012: Observed Antarctic interannual climate variability and tropical linkages. J. Climate, 25, 40484066, doi:10.1175/JCLI-D-11-00273.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1975a: A quasi-biennial standing wave in the Southern Hemisphere and interrelations with sea surface temperature. Quart. J. Roy. Meteor. Soc., 101, 5574, doi:10.1002/qj.49710142706.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1975b: Reply to comment on ‘A quasi-biennial standing wave in the Southern Hemisphere and interrelations with sea surface temperature’ by K. E. Trenberth. Quart. J. Roy. Meteor. Soc., 101, 174176.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1976: Spatial and temporal variations of the southern oscillation. Quart. J. Roy. Meteor. Soc., 102, 639653, doi:10.1002/qj.49710243310.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, doi:10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turner, J., 2004: The El Niño–Southern Oscillation and Antarctica. Int. J. Climatol., 24, 131, doi:10.1002/joc.965.

  • Wilson, A. B., D. H. Bromwich, K. M. Hines, and S. Wang, 2014: El Niño flavors and their simulated impacts on atmospheric circulation in the high southern latitudes. J. Climate, 27, 89348955, doi:10.1175/JCLI-D-14-00296.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., Z. Zhang, M. Zhou, S. Zhong, D. Lenschow, H. Hsu, H. Wu, and B. Sun, 2010: Validation of ECMWF and NCEP-NCAR Reanalysis Data in Antarctica. Adv. Atmos. Sci., 27, 11511168, doi:10.1007/s00376-010-9140-1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1762 665 34
PDF Downloads 1408 385 25