Does Quantile Mapping of Simulated Precipitation Correct for Biases in Transition Probabilities and Spell Lengths?

Jan Rajczak Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Jan Rajczak in
Current site
Google Scholar
PubMed
Close
,
Sven Kotlarski Institute for Atmospheric and Climate Science, ETH Zurich, and Federal Office of Meteorology and Climatology MeteoSwiss, Zurich, Switzerland

Search for other papers by Sven Kotlarski in
Current site
Google Scholar
PubMed
Close
, and
Christoph Schär Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Christoph Schär in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Climate impact studies constitute the basis for the formulation of adaptation strategies. Usually such assessments apply statistically postprocessed output of climate model projections to force impact models. Increasingly, time series with daily resolution are used, which require high consistency, for instance with respect to transition probabilities (TPs) between wet and dry days and spell durations. However, both climate models and commonly applied statistical tools have considerable uncertainties and drawbacks. This paper compares the ability of 1) raw regional climate model (RCM) output, 2) bias-corrected RCM output, and 3) a conventional weather generator (WG) that has been calibrated to match observed TPs to simulate the sequence of dry, wet, and very wet days at a set of long-term weather stations across Switzerland. The study finds systematic biases in TPs and spell lengths for raw RCM output, but a substantial improvement after bias correction using the deterministic quantile mapping technique. For the region considered, bias-corrected climate model output agrees well with observations in terms of TPs as well as dry and wet spell durations. For the majority of cases (models and stations) bias-corrected climate model output is similar in skill to a simple Markov chain stochastic weather generator. There is strong evidence that bias-corrected climate model simulations capture the atmospheric event sequence more realistically than a simple WG.

Corresponding author address: Jan Rajczak, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland. E-mail: jan.rajczak@env.ethz.ch

Abstract

Climate impact studies constitute the basis for the formulation of adaptation strategies. Usually such assessments apply statistically postprocessed output of climate model projections to force impact models. Increasingly, time series with daily resolution are used, which require high consistency, for instance with respect to transition probabilities (TPs) between wet and dry days and spell durations. However, both climate models and commonly applied statistical tools have considerable uncertainties and drawbacks. This paper compares the ability of 1) raw regional climate model (RCM) output, 2) bias-corrected RCM output, and 3) a conventional weather generator (WG) that has been calibrated to match observed TPs to simulate the sequence of dry, wet, and very wet days at a set of long-term weather stations across Switzerland. The study finds systematic biases in TPs and spell lengths for raw RCM output, but a substantial improvement after bias correction using the deterministic quantile mapping technique. For the region considered, bias-corrected climate model output agrees well with observations in terms of TPs as well as dry and wet spell durations. For the majority of cases (models and stations) bias-corrected climate model output is similar in skill to a simple Markov chain stochastic weather generator. There is strong evidence that bias-corrected climate model simulations capture the atmospheric event sequence more realistically than a simple WG.

Corresponding author address: Jan Rajczak, Institute for Atmospheric and Climate Science, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland. E-mail: jan.rajczak@env.ethz.ch
Save
  • Addor, N., and J. Seibert, 2014: Bias correction for hydrological impact studies—Beyond the daily perspective. Hydrol. Processes, 28, 48234828, doi:10.1002/hyp.10238.

    • Search Google Scholar
    • Export Citation
  • Bellprat, O., S. Kotlarski, D. Lüthi, and C. Schär, 2013: Physical constraints for temperature biases in climate models. Geophys. Res. Lett., 40, 40424047, doi:10.1002/grl.50737.

    • Search Google Scholar
    • Export Citation
  • Boberg, F., and J. H. Christensen, 2012: Overestimation of Mediterranean summer temperature projections due to model deficiencies. Nat. Climate Change, 2, 433436, doi:10.1038/nclimate1454.

    • Search Google Scholar
    • Export Citation
  • Buser, C., H. R. Künsch, D. Lüthi, M. Wild, and C. Schär, 2009: Bayesian multi-model projection of climate: Bias assumptions and interannual variability. Climate Dyn., 33, 849868, doi:10.1007/s00382-009-0588-6.

    • Search Google Scholar
    • Export Citation
  • CH2011, 2011: Swiss climate change scenarios CH2011. MeteoSwiss Rep., 88 pp. [Available online at http://ch2011.ch/.]

  • CH2014-Impacts, 2014: Toward quantitative scenarios of climate change impacts in Switzerland. MeteoSwiss Rep., 136 pp. [Available online at http://www.ch2014-impacts.ch/.]

  • Christensen, J. H., and O. Christensen, 2007: A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change, 81, 730, doi:10.1007/s10584-006-9210-7.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., F. Boberg, O. B. Christensen, and P. Lucas-Picher, 2008: On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett., 35, L20709, doi:10.1029/2008GL035694.

    • Search Google Scholar
    • Export Citation
  • Fowler, H. J., S. Blenkinsop, and C. Tebaldi, 2007: Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 15471578, doi:10.1002/joc.1556.

    • Search Google Scholar
    • Export Citation
  • Gudmundsson, L., J. B. Bremnes, J. E. Haugen, and T. Engen-Skaugen, 2012: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci., 16, 33833390, doi:10.5194/hess-16-3383-2012.

    • Search Google Scholar
    • Export Citation
  • Ines, A. V. M., J. W. Hansen, and A. W. Robertson, 2011: Enhancing the utility of daily GCM rainfall for crop yield prediction. Int. J. Climatol., 31, 21682182, doi:10.1002/joc.2223.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Jacob, D., and Coauthors, 2014: EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Change, 14, 563578, doi:10.1007/s10113-013-0499-2.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G. J., M. C. Perry, and M. J. Prior, 2008: The climate of the United Kingdom and recent trends. Met Office Hadley Centre Rep., 122 pp.

  • Keller, D. E., A. M. Fischer, C. Frei, M. A. Liniger, C. Appenzeller, and R. Knutti, 2014: Stochastic modelling of spatially and temporally consistent daily precipitation time-series over complex topography. Hydrol. Earth Syst. Sci. Discuss., 11, 87378777, doi:10.5194/hessd-11-8737-2014.

    • Search Google Scholar
    • Export Citation
  • Kerkhoff, C., H. R. Künsch, and C. Schär, 2014: Assessment of bias assumptions for climate models. J. Climate, 27, 67996818, doi:10.1175/JCLI-D-13-00716.1.

    • Search Google Scholar
    • Export Citation
  • KNMI, 2014: KNMI 2014 climate scenarios for the Netherlands: A guide for professionals in climate adaptation. KNMI Rep., 34 pp.

  • Kotlarski, S., and Coauthors, 2014: Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev., 7, 12971333, doi:10.5194/gmd-7-1297-2014.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2012: Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums. Geophys. Res. Lett., 39, L06706, doi:10.1029/2012GL051210.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., 2013: Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. J. Climate, 26, 21372143, doi:10.1175/JCLI-D-12-00821.1.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., W. Gutowski, R. Jones, R. Leung, S. McGinnis, A. Nunes, and Y. Qian, 2009: A regional climate change assessment program for North America. Eos, Trans. Amer. Geophys. Union, 90, 311, doi:10.1029/2009EO360002.

    • Search Google Scholar
    • Export Citation
  • MeteoSchweiz, 2006: Starkniederschläge August 2005. Arbeitsberichte der MeteoSchweiz 211, 63 pp. [Available online at http://www.meteoschweiz.admin.ch/content/dam/meteoswiss/de/Ungebundene-Seiten/Publikationen/Fachberichte/doc/ab211.pdf.]

  • MeteoSchweiz, 2013: RhiresD—Gridded data of daily precipitation in Switzerland. Accessed 3 February 2016. [Available online at http://www.meteoswiss.admin.ch/content/dam/meteoswiss/de/service-und-publikationen/produkt/raeumliche-daten-niederschlag/doc/ProdDoc_RhiresD.pdf.]

  • Rajczak, J., P. Pall, and C. Schär, 2013: Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine region. J. Geophys. Res. Atmos., 118, 36103626, doi:10.1002/jgrd.50297.

    • Search Google Scholar
    • Export Citation
  • Räty, O., J. Räisänen, and J. Ylhäisi, 2014: Evaluation of delta change and bias correction methods for future daily precipitation: Intermodel cross-validation using ENSEMBLES simulations. Climate Dyn., 42, 22872303, doi:10.1007/s00382-014-2130-8.

    • Search Google Scholar
    • Export Citation
  • Richardson, C. W., 1981: Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour. Res., 17, 182190, doi:10.1029/WR017i001p00182.

    • Search Google Scholar
    • Export Citation
  • Sachindra, D. A., F. Huang, A. Barton, and B. J. C. Perera, 2014: Statistical downscaling of general circulation model outputs to precipitation—Part 2: Bias-correction and future projections. Int. J. Climatol., 34, 32823303, doi:10.1002/joc.3915.

    • Search Google Scholar
    • Export Citation
  • Semenov, M. A., R. J. Brooks, E. M. Barrow, and C. W. Richardson, 1998: Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Climate Res., 10, 95107, doi:10.3354/cr010095.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Teutschbein, C., and J. Seibert, 2012: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol., 456–457, 1229, doi:10.1016/j.jhydrol.2012.05.052.

    • Search Google Scholar
    • Export Citation
  • Themeßl, M., A. Gobiet, and A. Leuprecht, 2011: Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol., 31, 15301544, doi:10.1002/joc.2168.

    • Search Google Scholar
    • Export Citation
  • Themeßl, M., A. Gobiet, and G. Heinrich, 2012: Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Climatic Change, 112, 449468, doi:10.1007/s10584-011-0224-4.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • van der Linden, P., and J. Mitchell, Eds., 2009: ENSEMBLES: Climate change and its Impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre Rep., 160 pp.

  • von Storch, H., 1999: On the use of “inflation” in statistical downscaling. J. Climate, 12, 35053506, doi:10.1175/1520-0442(1999)012<3505:OTUOII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilcke, R., T. Mendlik, and A. Gobiet, 2013: Multi-variable error correction of regional climate models. Climatic Change, 120, 871887, doi:10.1007/s10584-013-0845-x.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Academic Press, 704 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 811 231 11
PDF Downloads 653 166 9