• Barnes, E. A., , and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, doi:10.1175/JCLI-D-12-00536.1.

    • Search Google Scholar
    • Export Citation
  • Bond, N. A., , M. F. Cronin, , and M. Garvert, 2010: Atmospheric sensitivity to SST near the Kuroshio Extension during the extratropical transition of Typhoon Tokage. Mon. Wea. Rev., 138, 26442663, doi:10.1175/2010MWR3198.1.

    • Search Google Scholar
    • Export Citation
  • Brand, S., 1970: Interaction of binary tropical cyclones in the western North Pacific Ocean. J. Appl. Meteor., 9, 433441, doi:10.1175/1520-0450(1970)009<0433:IOBTCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colbert, A. J., , B. J. Soden, , and B. P. Kirtman, 2015: The impact of natural and anthropogenic climate change on western North Pacific tropical cyclone tracks. J. Climate, 28, 18061823, doi:10.1175/JCLI-D-14-00100.1.

    • Search Google Scholar
    • Export Citation
  • Gentry, M. S., , and G. M. Lackmann, 2010: Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Wea. Rev., 138, 688704, doi:10.1175/2009MWR2976.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, doi:10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., , and R. L. Elsberry, 1995: Large-scale circulation variability over the tropical western North Pacific. Part I: Spatial patterns and tropical cyclone characteristics. Mon. Wea. Rev., 123, 12251246, doi:10.1175/1520-0493(1995)123<1225:LSCVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hirata, H., , and R. Kawamura, 2014: Scale interaction between typhoons and the North Pacific subtropical high and associated remote effects during the baiu/meiyu season. J. Geophys. Res. Atmos., 119, 51575170, doi:10.1002/2013JD021430.

    • Search Google Scholar
    • Export Citation
  • Ho, C.-H., , J.-J. Baik, , J.-H. Kim, , D.-Y. Gong, , and C.-H. Sui, 2004: Interdecadal changes in summertime typhoon tracks. J. Climate, 17, 17671776, doi:10.1175/1520-0442(2004)017<1767:ICISTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1983: Tropical cyclone motion—Environmental interaction plus a beta-effect. J. Atmos. Sci., 40, 328342, doi:10.1175/1520-0469(1983)040<0328:TCMEIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoover, B. T., , and M. C. Morgan, 2006: Effects of cumulus parameterizations on tropical cyclone potential vorticity structure and steering flow. 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 8B.5. [Available online at https://ams.confex.com/ams/27Hurricanes/techprogram/paper_108783.htm.]

  • Hoskins, B. J., , and D. J. Karoly, 1981: The steady linear response to a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, doi:10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and M. J. Rodwell, 1995: A model of Asian summer monsoon. Part I: The global scale. J. Atmos. Sci., 52, 13291340, doi:10.1175/1520-0469(1995)052<1329:AMOTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ikawa, M., , and K. Saito, 1991: Description of a non-hydrostatic model developed at the Forecast Research Department of the MRI. MRI Tech. Rep. 28, 238 pp.

  • Jones, S., and Coauthors, 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 10521092, doi:10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J., , and J. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Kawamura, R., , and T. Ogasawara, 2006: On the role of typhoons in generating PJ teleconnection patterns over the western North Pacific in late summer. SOLA, 2, 3740, doi:10.2151/sola.2006-010.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, doi:10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., , and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 20092030, doi:10.1256/qj.05.204.

    • Search Google Scholar
    • Export Citation
  • Kudo, T., , R. Kawamura, , H. Hirata, , K. Ichiyanagi, , M. Tanoue, , and K. Yoshimura, 2014: Large-scale vapor transport of remotely evaporated seawater by a Rossby wave response to typhoon forcing during the baiu/meiyu season as revealed by the JRA-55 reanalysis. J. Geophys. Res. Atmos., 119, 88258838, doi:10.1002/2014JD021999.

    • Search Google Scholar
    • Export Citation
  • Kumagai, Y., , and K. Saito, 2004: Improvement of PBL processes of JMANHM (in Japanese). Proc. Spring Conf. of MSJ, Tokyo, Japan, Japan Meteorological Agency, C104.

  • Lee, J.-Y., , B. Wang, , K.-W. Seo, , J.-S. Kug, , Y.-S. Choi, , Y. Kosaka, , and K.-J. Ha, 2014: Future change of Northern Hemisphere summer tropical–extratropical teleconnection in CMIP5 models. J. Climate, 27, 36433664, doi:10.1175/JCLI-D-13-00261.1.

    • Search Google Scholar
    • Export Citation
  • Louis, J. F., , M. Tiedtke, , and J. F. Geleyn, 1982: A short history of the operational PBL parameterization at ECMWF. Proc. Workshop on Planetary Boundary Layer Parameterization, Reading, United Kingdom, ECMWF, 59–79.

  • Minobe, S., , M. Miyashita, , A. Kuwano-Yoshida, , H. Tokinaga, , and S.-P. Xie, 2010: Atmospheric response to the Gulf Stream: Seasonal variations. J. Climate, 23, 36993719, doi:10.1175/2010JCLI3359.1.

    • Search Google Scholar
    • Export Citation
  • Miyasaka, T., , and H. Nakamura, 2005: Structure and formation mechanism of the Northern Hemisphere summertime subtropical highs. J. Climate, 18, 50465065, doi:10.1175/JCLI3599.1.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., , R. Mizuta, , and E. Shindo, 2012: Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Climate Dyn., 39, 25692584, doi:10.1007/s00382-011-1223-x.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., , and K. Rajendran, 2007: Relationship between tropospheric circulation over the western North Pacific and tropical cyclone approach/landfall on Japan. J. Meteor. Soc. Japan, 85, 101114, doi:10.2151/jmsj.85.101.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., , and Z. Sun, 1985: A modelling and observational study of the relationship between sea surface temperature in the north-west Atlantic and the atmospheric general circulation. Quart. J. Roy. Meteor. Soc., 111, 947975, doi:10.1002/qj.49711147003.

    • Search Google Scholar
    • Export Citation
  • Ren, D. D., , M. Lynch, , L. M. Leslie, , and J. Lemarshall, 2014: Sensitivity of tropical cyclone tracks and intensity to ocean surface temperature: Four cases in four different basins. Tellus, 66A, 24212, doi:10.3402/tellusa.v66.24212.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., , and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 31923211, doi:10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saito, K., and Coauthors, 2006: The operational JMA nonhydrostatic mesoscale model. Mon. Wea. Rev., 134, 12661298, doi:10.1175/MWR3120.1.

    • Search Google Scholar
    • Export Citation
  • Shibata, Y., , R. Kawamura, , and H. Hatsushika, 2010: Role of large-scale circulation in triggering foehns in the Hokuriku district of Japan during midsummer. J. Meteor. Soc. Japan, 88, 313324, doi:10.2151/jmsj.2010-304.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1993: A hurricane beta-drift law. J. Atmos. Sci., 50, 32133215, doi:10.1175/1520-0469(1993)050<3213:AHBDL>2.0.CO;2.

  • Solomon, A., , and M. Newman, 2011: Decadal predictability of tropical Indo-Pacific Ocean temperature trends due to anthropogenic forcing in a coupled climate model. Geophys. Res. Lett., 38, L02703, doi:10.1029/2010GL045978.

    • Search Google Scholar
    • Export Citation
  • Sommeria, G., 1976: Three-dimensional simulation of turbulent processes in an undisturbed trade wind boundary layer. J. Atmos. Sci., 33, 216241, doi:10.1175/1520-0469(1976)033<0216:TDSOTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sugi, M., , K. Kuma, , K. Tada, , K. Tamiya, , N. Hasegawa, , T. Iwasaki, , S. Yamada, , and T. Kitade, 1990: Description and performance of the JMA operational global spectral model (JMAGSM88). Geophys. Mag., 43, 105130.

    • Search Google Scholar
    • Export Citation
  • Sun, W. Y., , and C. Z. Chang, 1986: Diffusion model for a convective layer. Part I: Numerical simulation of convective boundary layer. J. Climate Appl. Meteor., 25, 14451453, doi:10.1175/1520-0450(1986)025<1445:DMFACL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., , and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, doi:10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 16431658, doi:10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C., , and L.-G. Wu, 2012: Tropical cyclone intensity in the western North Pacific: Downscaling from IPCC AR4 experiments. J. Meteor. Soc. Japan, 90, 223233, doi:10.2151/jmsj.2012-205.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., , and M. Kimoto, 2000: Atmosphere–ocean coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126, 33433369, doi:10.1002/qj.49712657017.

    • Search Google Scholar
    • Export Citation
  • Wu, L.-G., , and B. Wang, 2004: Assessing impacts of global warming on tropical cyclone tracks. J. Climate, 17, 16861698, doi:10.1175/1520-0442(2004)017<1686:AIOGWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L.-G., , B. Wang, , and S. Geng, 2005: Growing typhoon influence on East Asia. Geophys. Res. Lett., 32, L18703, doi:10.1029/2005GL022937.

    • Search Google Scholar
    • Export Citation
  • Yamada, K., , and R. Kawamura, 2007: Dynamical link between typhoon activity and the PJ teleconnection pattern from early summer to autumn as revealed by the JRA-25 reanalysis. SOLA, 3, 6568, doi:10.2151/sola.2007-017.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., , Y.-G. Ham, , and J.-Y. Lee, 2012: Changes in the tropical Pacific SST trend from CMIP3 to CMIP5 and its implication of ENSO. J. Climate, 25, 77647771, doi:10.1175/JCLI-D-12-00304.1.

    • Search Google Scholar
    • Export Citation
  • Yokoi, S., , and Y. Takayabu, 2009: Multi-model projection of global warming impact on tropical cyclone genesis frequency over the western north Pacific. J. Meteor. Soc. Japan, 87, 525538, doi:10.2151/jmsj.87.525.

    • Search Google Scholar
    • Export Citation
  • Yokoi, S., , and Y. Takayabu, 2013: Attribution of decadal variability in tropical cyclone passage frequency over the western North Pacific: A new approach emphasizing the genesis location of cyclones. J. Climate, 26, 973987, doi:10.1175/JCLI-D-12-00060.1.

    • Search Google Scholar
    • Export Citation
  • Yokoi, S., , Y. Takayabu, , and H. Murakami, 2013: Attribution of projected future changes in tropical cyclone passage frequency over the western North Pacific. J. Climate, 26, 40964111, doi:10.1175/JCLI-D-12-00218.1.

    • Search Google Scholar
    • Export Citation
  • Yumoto, M., , and T. Matsuura, 2001: Interdecadal variability of tropical cyclone activity in the western North Pacific. J. Meteor. Soc. Japan, 79, 2335, doi:10.2151/jmsj.79.23.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., , and T. Li, 2014: A simple analytical model for understanding the formation of sea surface temperature patterns under global warming. J. Climate, 27, 84138421, doi:10.1175/JCLI-D-14-00346.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 87 87 36
PDF Downloads 80 80 28

Response of Tropical Cyclone Tracks to Sea Surface Temperature in the Western North Pacific

View More View Less
  • 1 Graduate School of Science, Hokkaido University, Sapporo, Japan
  • 2 Faculty of Science, Hokkaido University, Sapporo, Japan
© Get Permissions
Restricted access

Abstract

A set of short-term experiments using a regional atmospheric model (RAM) were carried out to investigate the response of tropical cyclone (TC) tracks to sea surface temperature (SST) in the western North Pacific. For 10 selected TC cases occurring during 2002–07, a warm and a cold run are performed with 2 and −2 K added to the SSTs uniformly over the model domain, respectively. The cases can be classified into three groups in terms of recurvature: recurved tracks in the warm and cold runs, a recurved track in the warm run and a nonrecurved track in the cold run, and nonrecurved tracks in both runs. Commonly the warm run produced northward movement of the TC faster than the cold run. The rapid northward migration can be mainly explained by the result that cyclonic circulation to the west of the TC is found in the steering flow in the warm run and it is not in the cold run. The beta effect is also activated under the warm SST environment. For the typical TC cases, a linear baroclinic model experiment is performed to examine how the cyclonic circulation is intensified in the warm run. The stationary linear response to diabatic heating obtained from the RAM experiment reveals that the intensified TC by the warm SST excites the cyclonic circulation in the lower troposphere to the west of the forcing position. The vorticity and thermodynamic equation analysis shows the detailed mechanism. The time scale of the linear response and the teleconnection are also discussed.

Corresponding author address: Dr. Masaru Inatsu, Faculty of Science, Hokkaido University, Rigaku Bldg. 8, N10W8, Kita, Sapporo 060-0810, Japan. E-mail: inaz@mail.sci.hokudai.ac.jp

This article is included in the Climate Implications of Frontal Scale Air–Sea Interaction Special Collection.

Abstract

A set of short-term experiments using a regional atmospheric model (RAM) were carried out to investigate the response of tropical cyclone (TC) tracks to sea surface temperature (SST) in the western North Pacific. For 10 selected TC cases occurring during 2002–07, a warm and a cold run are performed with 2 and −2 K added to the SSTs uniformly over the model domain, respectively. The cases can be classified into three groups in terms of recurvature: recurved tracks in the warm and cold runs, a recurved track in the warm run and a nonrecurved track in the cold run, and nonrecurved tracks in both runs. Commonly the warm run produced northward movement of the TC faster than the cold run. The rapid northward migration can be mainly explained by the result that cyclonic circulation to the west of the TC is found in the steering flow in the warm run and it is not in the cold run. The beta effect is also activated under the warm SST environment. For the typical TC cases, a linear baroclinic model experiment is performed to examine how the cyclonic circulation is intensified in the warm run. The stationary linear response to diabatic heating obtained from the RAM experiment reveals that the intensified TC by the warm SST excites the cyclonic circulation in the lower troposphere to the west of the forcing position. The vorticity and thermodynamic equation analysis shows the detailed mechanism. The time scale of the linear response and the teleconnection are also discussed.

Corresponding author address: Dr. Masaru Inatsu, Faculty of Science, Hokkaido University, Rigaku Bldg. 8, N10W8, Kita, Sapporo 060-0810, Japan. E-mail: inaz@mail.sci.hokudai.ac.jp

This article is included in the Climate Implications of Frontal Scale Air–Sea Interaction Special Collection.

Save