Climate Model Biases in the Width of the Tropical Belt

Nicholas Davis Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Nicholas Davis in
Current site
Google Scholar
PubMed
Close
and
Thomas Birner Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Thomas Birner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Earth’s arid subtropics are situated at the edges of the tropical belt, which encircles the planet along the equator and covers half of its surface area. The climate of the tropical belt is strongly influenced by the Hadley cells, with their subsidence and easterly trade winds both sustaining the aridity at the belt’s edges. The understanding of Earth’s past, present, and future climates is contingent on understanding the dynamics influencing this region. An important but unanswered question is how realistically climate models reproduce the mean state of the tropical belt. This study augments the existing literature by examining the mean width and seasonality of the tropical belt in climate models from phase 5 of CMIP (CMIP5) and experiments from the second phase of the Chemistry–Climate Model Validation (CCMVal-2) activity of the Stratospheric Processes and Their Role in Climate (SPARC) project. While the models overall reproduce the structure of the tropical belt width’s seasonal cycle, they underestimate its amplitude and cannot consistently reproduce the seasonal cycle lag between the Northern Hemisphere Hadley cell edge and subtropical jet latitudes found in observations. Additionally, up to 50% of the intermodel variation in mean tropical belt width can be attributed to model horizontal resolution, with finer resolution leading to a narrower tropical belt. Finer resolution is associated with an equatorward shift and intensification of subtropical eddy momentum flux convergence, which via the Coriolis torque explains essentially all of the grid-size bias and a large fraction of the total intermodel variation in Hadley cell width.

Corresponding author address: Nicholas Davis, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523. E-mail: nadavis@atmos.colostate.edu

Abstract

Earth’s arid subtropics are situated at the edges of the tropical belt, which encircles the planet along the equator and covers half of its surface area. The climate of the tropical belt is strongly influenced by the Hadley cells, with their subsidence and easterly trade winds both sustaining the aridity at the belt’s edges. The understanding of Earth’s past, present, and future climates is contingent on understanding the dynamics influencing this region. An important but unanswered question is how realistically climate models reproduce the mean state of the tropical belt. This study augments the existing literature by examining the mean width and seasonality of the tropical belt in climate models from phase 5 of CMIP (CMIP5) and experiments from the second phase of the Chemistry–Climate Model Validation (CCMVal-2) activity of the Stratospheric Processes and Their Role in Climate (SPARC) project. While the models overall reproduce the structure of the tropical belt width’s seasonal cycle, they underestimate its amplitude and cannot consistently reproduce the seasonal cycle lag between the Northern Hemisphere Hadley cell edge and subtropical jet latitudes found in observations. Additionally, up to 50% of the intermodel variation in mean tropical belt width can be attributed to model horizontal resolution, with finer resolution leading to a narrower tropical belt. Finer resolution is associated with an equatorward shift and intensification of subtropical eddy momentum flux convergence, which via the Coriolis torque explains essentially all of the grid-size bias and a large fraction of the total intermodel variation in Hadley cell width.

Corresponding author address: Nicholas Davis, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523. E-mail: nadavis@atmos.colostate.edu
Save
  • Adam, O., T. Schneider, and N. Harnik, 2014: Role of changes in mean temperatures versus temperature gradients in the recent widening of the Hadley circulation. J. Climate, 27, 74507461, doi:10.1175/JCLI-D-14-00140.1.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, doi:10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 89, 313333, doi:10.1175/BAMS-89-3-313.

    • Search Google Scholar
    • Export Citation
  • Béguin, A., O. Martius, M. Sprenger, P. Spichtinger, D. Folini, and H. Wernli, 2013: Tropopause level Rossby wave breaking in the Northern Hemisphere: A feature-based validation of the ECHAM5-HAM climate model. Int. J. Climatol., 33, 30733082, doi:10.1002/joc.3631.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and S. Hagemann, 2004: Sensitivity of the ERA40 reanalysis to the observing system: Determination of the global atmospheric circulation from reduced observations. Tellus, 56A, 456471, doi:10.1111/j.1600-0870.2004.00079.x.

    • Search Google Scholar
    • Export Citation
  • Birner, T., 2010: Residual circulation and tropopause structure. J. Atmos. Sci., 67, 25822600, doi:10.1175/2010JAS3287.1.

  • Birner, T., S. M. Davis, and D. J. Seidel, 2014: The changing width of Earth’s tropical belt. Phys. Today, 67, 3844, doi:10.1063/PT.3.2620.

    • Search Google Scholar
    • Export Citation
  • Boville, B. A., 1991: Sensitivity of simulated climate to model resolution. J. Climate, 4, 469485, doi:10.1175/1520-0442(1991)004<0469:SOSCTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Caballero, R., 2008: Hadley cell bias in climate models linked to extratropical eddy stress. Geophys. Res. Lett., 35, L18709, doi:10.1029/2008GL035084.

    • Search Google Scholar
    • Export Citation
  • Chen, S., K. Wei, W. Chen, and L. Song, 2014: Regional changes in the annual mean Hadley circulation in recent decades. J. Geophys. Res., 119, 78157832, doi:10.1002/2014JD021540.

    • Search Google Scholar
    • Export Citation
  • Davis, N. A., and T. Birner, 2013: Seasonal to multidecadal variability of the width of the tropical belt. J. Geophys. Res., 118, 77737787, doi:10.1002/jgrd.50610.

    • Search Google Scholar
    • Export Citation
  • Davis, S. M., and K. H. Rosenlof, 2012: A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations. J. Climate, 25, 10611078, doi:10.1175/JCLI-D-11-00127.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Edmon, H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616, doi:10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2008: Overview of the new CCMVal reference and sensitivity simulations in support of upcoming ozone and climate assessments and the planned SPARC CCMVal. SPARC Newsletter, No. 30, SPARC International Project Office, Toronto, Canada, 2026.

    • Search Google Scholar
    • Export Citation
  • Feng, S., and Q. Fu, 2013: Expansion of global drylands under a warmer climate. Atmos. Chem. Phys., 13, 10 08110 094, doi:10.5194/acp-13-10081-2013.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64, 19591976, doi:10.1175/JAS3935.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and N. A. Davis, 2011: The seasonal cycle of midlatitude static stability over land and ocean in global reanalyses. Geophys. Res. Lett., 38, L13803, doi:10.1029/2011GL047747.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., J. Lu, and G. Chen, 2007: Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett., 34, L18804, doi:10.1029/2007GL031115.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2000: The general circulation of the atmosphere. Proc. 2000 Program in Geophysical Fluid Dynamics, Woods Hole, MA, Woods Hole Oceanographic Institute, 30–36.

  • Held, I. M., and P. J. Phillipps, 1993: Sensitivity of the eddy momentum flux to meridional resolution in atmospheric GCMs. J. Climate, 6, 499507, doi:10.1175/1520-0442(1993)006<0499:SOTEMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1994: An Introduction to Dynamic Meteorology. International Geophysics Series, Vol. 88, Academic Press, 535 pp.

  • Hu, Y., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 52295236, doi:10.5194/acp-7-5229-2007.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., L. Tao, and J. Liu, 2013: Poleward expansion of the Hadley circulation in CMIP5 simulations. Adv. Atmos. Sci., 30, 790795, doi:10.1007/s00376-012-2187-4.

    • Search Google Scholar
    • Export Citation
  • Johanson, C. M., and Q. Fu, 2009: Hadley cell widening: Model simulations versus observations. J. Climate, 22, 27132725, doi:10.1175/2008JCLI2620.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., and L. M. Polvani, 2011: The interannual relationship between the eddy-driven jet and the edge of the Hadley cell. J. Climate, 24, 563568, doi:10.1175/2010JCLI4077.1.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., and J. Lu, 2012: Expansion of the Hadley cell under global warming: Winter versus summer. J. Climate, 25, 83878393, doi:10.1175/JCLI-D-12-00323.1.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., and E. P. Gerber, 2010: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett., 37, L09708, doi:10.1029/2010GL042873.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-K., and S. Lee, 2001: Hadley cell dynamics in a primitive equation model. Part II: Nonaxisymmetric flow. J. Atmos. Sci., 58, 28592871, doi:10.1175/1520-0469(2001)058<2859:HCDIAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, J., K. M. Grise, and S.-W. Son, 2013: Thermal characteristics of the cold-point tropopause region in CMIP5 models. J. Geophys. Res., 118, 88278841, doi:10.1002/jgrd.50649.

    • Search Google Scholar
    • Export Citation
  • Lorant, V., and J.-F. Royer, 2001: Sensitivity of equatorial convection to horizontal resolution in aquaplanet simulations with a variable-resolution GCM. Mon. Wea. Rev., 129, 27302745, doi:10.1175/1520-0493(2001)129<2730:SOECTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 118, L06805, doi:10.1029/2006GL028443.

    • Search Google Scholar
    • Export Citation
  • Lucas, C., B. Timbal, and H. Nguyen, 2014: The expanding tropics: A critical assessment of the observational and modeling studies. Wiley Interdiscip. Rev.: Climate Change, 5, 89112, doi:10.1002/wcc.251.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., 1993: Dynamics and energy balance of the Hadley circulation and the tropical precipitation zones: Significance of the distribution of evaporation. J. Atmos. Sci., 50, 18741887, doi:10.1175/1520-0469(1993)050<1874:DAEBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Quan, X.-W., M. P. Hoerling, J. Perlwitz, H. F. Diaz, and T. Xu, 2014: How fast are the tropics expanding? J. Climate, 27, 19992013, doi:10.1175/JCLI-D-13-00287.1.

    • Search Google Scholar
    • Export Citation
  • Rauscher, S., T. Ringler, W. Skamarock, and A. Mirin, 2013: Exploring a global multi-resolution modeling approach using aquaplanet simulations. J. Climate, 26, 24322452, doi:10.1175/JCLI-D-12-00154.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA—NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. M. W. Frierson, 2012: Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett., 39, L18704, doi:10.1029/2012GL052910.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655688, doi:10.1146/annurev.earth.34.031405.125144.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, doi:10.1038/ngeo.2007.38.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., 2014: On the role of planetary-scale waves in the abrupt seasonal transition of the Northern Hemisphere general circulation. J. Atmos. Sci., 71, 17241746, doi:10.1175/JAS-D-13-0137.1.

    • Search Google Scholar
    • Export Citation
  • Stachnik, J. P., and C. Schumacher, 2011: A comparison of the Hadley circulation in modern reanalyses. J. Geophys. Res., 116, D22102, doi:10.1029/2011JD016677.

    • Search Google Scholar
    • Export Citation
  • Strong, C., and R. E. Davis, 2006: Temperature-related trends in the vertical position of the summer upper tropospheric surface of maximum wind over the Northern Hemisphere. Int. J. Climatol., 26, 19771997, doi:10.1002/joc.1344.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., D. P. Stepaniak, J. W. Hurrell, and M. Fiorino, 2001: Quality of reanalyses in the tropics. J. Climate, 14, 14991510, doi:10.1175/1520-0442(2001)014<1499:QORITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., Z. Shi, J. R. Lanzante, and A. H. Oort, 1999: The Hadley circulation: Assessing NCEP/NCAR reanalysis and sparse in-situ estimates. Climate Dyn., 15, 719735, doi:10.1007/s003820050312.

    • Search Google Scholar
    • Export Citation
  • WMO, 1957: Meteorology: A three-dimensional science. WMO Bull., 6, 134–138.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 523 153 48
PDF Downloads 286 92 4