• Barnes, E. A., , and D. L. Hartmann, 2010: Dynamical feedback and the persistence of the NAO. J. Atmos. Sci., 67, 851865, doi:10.1175/2009JAS3193.1.

    • Search Google Scholar
    • Export Citation
  • Black, E., 2012: The influence of the North Atlantic Oscillation and European circulation regimes on the daily to interannual variability of winter precipitation in Israel. Int. J. Climatol., 32, 16541664, doi:10.1002/joc.2383.

    • Search Google Scholar
    • Export Citation
  • Branstator, G. W., , and J. D. Opsteegh, 1989: Free solutions of the barotropic vorticity equation. J. Atmos. Sci., 46, 17991814, doi:10.1175/1520-0469(1989)046<1799:FSOTBV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cattiaux, J., , R. Vautard, , C. Cassou, , P. Yiou, , V. Masson-Delmotte, , and F. Codron, 2010: Winter 2010 in Europe: A cold extreme in a warming climate. Geophys. Res. Lett., 37, L20704, doi:10.1029/2010GL044613.

    • Search Google Scholar
    • Export Citation
  • Croci-Maspoli, M., , and H. C. Davies, 2009: Key dynamical features of the 2005/06 European winter. Mon. Wea. Rev., 137, 664678, doi:10.1175/2008MWR2533.1.

    • Search Google Scholar
    • Export Citation
  • Diao, Y., , S. Xie, , and D. Luo, 2015: Asymmetry of winter European surface air temperature extremes and the North Atlantic Oscillation. J. Climate, 28, 517530, doi:10.1175/JCLI-D-13-00642.1.

    • Search Google Scholar
    • Export Citation
  • Eshel, G., , and B. F. Farrell, 2000: Mechanisms of eastern Mediterranean rainfall variability. J. Atmos. Sci., 57, 32193232, doi:10.1175/1520-0469(2000)057<3219:MOEMRV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eshel, G., , and B. F. Farrell, 2001: Thermodynamics of eastern Mediterranean rainfall variability. J. Atmos. Sci., 58, 8792, doi:10.1175/1520-0469(2001)058<0087:TOEMRV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., , and U. Dayan, 2008: Circumglobal teleconnections and wave packets associated with Israeli winter precipitation. Quart. J. Roy. Meteor. Soc., 134, 455467, doi:10.1002/qj.225.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , M. Ting, , and H. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15, 21252144, doi:10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., , and D. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi:10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillations: Regional temperatures and precipitation. Science, 269, 676679, doi:10.1126/science.269.5224.676.

    • Search Google Scholar
    • Export Citation
  • Kaas, E., , and G. Branstator, 1993: The relationship between a zonal index and blocking activity. J. Atmos. Sci., 50, 30613077, doi:10.1175/1520-0469(1993)050<3061:TRBAZI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krichak, S. O., , and P. Alpert, 2005a: Decadal trends in the east Atlantic–west Russia pattern and the Mediterranean precipitation. Int. J. Climatol., 25, 183192, doi:10.1002/joc.1124.

    • Search Google Scholar
    • Export Citation
  • Krichak, S. O., , and P. Alpert, 2005b: Signatures of the NAO in the atmospheric circulation during wet winter months over the Mediterranean region. Theor. Appl. Climatol., 82, 2739, doi:10.1007/s00704-004-0119-7.

    • Search Google Scholar
    • Export Citation
  • Krichak, S. O., , P. Kishcha, , and P. Alpert, 2002: Decadal trends of main Eurasian oscillations and the Mediterranean precipitation. Theor. Appl. Climatol., 72, 209220, doi:10.1007/s007040200021.

    • Search Google Scholar
    • Export Citation
  • Krichak, S. O., , J. S. Breitgand, , and S. B. Feldstein, 2012: A conceptual model for the identification of active Red Sea Trough synoptic events over the southeastern Mediterranean. J. Appl. Meteor. Climatol., 51, 962971, doi:10.1175/JAMC-D-11-0223.1.

    • Search Google Scholar
    • Export Citation
  • Krichak, S. O., , J. S. Breitgand, , S. Gualdi, , and S. B. Feldstein, 2014: Teleconnection—Extreme precipitation relationships over the Mediterranean region. Theor. Appl. Climatol., 117, 679692, doi:10.1007/s00704-013-1036-4.

    • Search Google Scholar
    • Export Citation
  • Luo, D., 2000: Planetary-scale baroclinic envelope Rossby solitons in a two-layer model and their interaction with synoptic-scale eddies. Dyn. Atmos. Oceans, 32, 2774, doi:10.1016/S0377-0265(99)00018-4.

    • Search Google Scholar
    • Export Citation
  • Luo, D., 2005: A barotropic envelope Rossby soliton model for block–eddy interaction. Part I: Effect of topography. J. Atmos. Sci., 62, 521, doi:10.1175/1186.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D., , and J. Cha, 2012: The North Atlantic Oscillation and the North Atlantic jet variability: Precursors to NAO regimes and transitions. J. Atmos. Sci., 69, 37643787, doi:10.1175/JAS-D-12-098.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D., , A. Lupo, , and H. Wan, 2007a: Dynamics of eddy-driven low-frequency dipole modes. Part I: A simple model of North Atlantic Oscillations. J. Atmos. Sci., 64, 338, doi:10.1175/JAS3818.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D., , T. Gong, , and Y. Diao, 2007b: Dynamics of eddy-driven low-frequency dipole modes. Part III: Meridional displacement of westerly jet anomalies during two phases of NAO. J. Atmos. Sci., 64, 32323248, doi:10.1175/JAS3998.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D., , Z. Zhu, , R. Ren, , L. Zhong, , and C. Wang, 2010a: Spatial pattern and zonal shift of the North Atlantic Oscillation. Part I: A dynamical interpretation. J. Atmos. Sci., 67, 28052826, doi:10.1175/2010JAS3345.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D., , L. Zhong, , R. Ren, , and C. Wang, 2010b: Spatial pattern and zonal shift of the North Atlantic Oscillation. Part II: Numerical experiments. J. Atmos. Sci., 67, 28272853, doi:10.1175/2010JAS3340.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D., , Y. Diao, , and S. B. Feldstein, 2011: The variability of the Atlantic storm track and the North Atlantic Oscillation: A link between intraseasonal and interannual variability. J. Atmos. Sci., 68, 577601, doi:10.1175/2010JAS3579.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D., , Y. Yao, , and S. B. Feldstein, 2014: Regime transition of the North Atlantic Oscillation and the extreme cold event over Europe in January–February 2012. Mon. Wea. Rev., 142, 47354757, doi:10.1175/MWR-D-13-00234.1.

    • Search Google Scholar
    • Export Citation
  • Luo, D., , Y. Yao, , A. Dai, , and S. B. Feldstein, 2015: The positive North Atlantic Oscillation with downstream blocking and Middle East snowstorms: The large-scale environment. J. Climate, 28, 63986418, doi:10.1175/JCLI-D-15-0184.1.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., , C. K. Folland, , L. V. Alexander, , A. Moberg, , and J. R. Knight, 2008: European climate extremes and the North Atlantic Oscillation. J. Climate, 21, 7283, doi:10.1175/2007JCLI1631.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , Y. Kushnir, , J. Nakamura, , M. Ting, , and N. Naik, 2010: Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10. Geophys. Res. Lett., 37, L14703, doi:10.1029/2010GL043830.

    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., , and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365, doi:10.1034/j.1600-0870.1990.t01-2-00003.x.

    • Search Google Scholar
    • Export Citation
  • Yao, Y., , and D. Luo, 2014: Relationship between zonal position of the North Atlantic Oscillation and Euro-Atlantic blocking events and its possible effect on the weather over Europe. Sci. China Earth Sci., 57, 26282636, doi:10.1007/s11430-014-4949-6.

    • Search Google Scholar
    • Export Citation
  • Yiou, P., , and M. Nogaj, 2004: Extreme climate events and weather regimes over the North Atlantic: When and where? Geophys. Res. Lett., 31, L07202, doi:10.1029/2003GL019119.

    • Search Google Scholar
    • Export Citation
  • Zolina, O., , C. Simmer, , K. Belyaev, , A. Kapala, , and S. Gulev, 2009: Improving estimates of heavy and extreme precipitation using daily records from European rain gauges. J. Hydrometeor., 10, 701716, doi:10.1175/2008JHM1055.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 30 30 8
PDF Downloads 18 18 11

The Positive North Atlantic Oscillation with Downstream Blocking and Middle East Snowstorms: Impacts of the North Atlantic Jet

View More View Less
  • 1 Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • 2 Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Qingdao Collaborative Innovation Center of Marine Science and Technology, Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
  • 3 Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York, and National Center for Atmospheric Research, Boulder, Colorado
  • 4 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions
Restricted access

Abstract

A recent study revealed that cold winter outbreaks over the Middle East and southeastern Europe are caused mainly by the northeast–southwest (NE–SW) tilting of European blocking (EB) associated with the positive-phase North Atlantic Oscillation (NAO+). Here, the North Atlantic conditions are examined that determine the EB tilting direction, defined as being perpendicular to the dipole anomaly orientation. Using daily reanalysis data, the NAO+ events are classified into strong (SJN) and weak (WJN) North Atlantic jet types. A composite analysis shows that the EB is generally stronger and located more westward and southward during SJN events than during WJN events. During SJN events, the NAO+ and EB dipoles exhibit NE–SW tilting, which leads to strong cold advection and large negative temperature anomalies over the Middle East and southeastern Europe. In contrast, northwest–southeast (NW–SE) tilting without strong negative temperature anomalies over the Middle East is seen during WJN events.

A nonlinear multiscale interaction model is modified to investigate the physical mechanism through which the North Atlantic jet (NAJ) affects EB with the NAO+ event. It is shown that, when the NAJ is stronger, an amplified EB event forms because of enhanced NAO+ energy dispersion. For a strong (weak) NAJ, the EB tends to occur in a relatively low-latitude (high latitude) region because of the suppressive (favorable) role of intensified (reduced) zonal wind in high latitudes. It exhibits NE–SW (NW–SE) tilting because the blocking region corresponds to negative-over-positive (opposite) zonal wind anomalies. The results suggest that the NAJ can modulate the tilting direction of EB, leading to different effects over the Middle East.

Corresponding author address: Dr. Dehai Luo, RCE-TEA, Institute of Atmospheric Physics, Chinese Academy of Sciences, Mailbox 9804, Huayanli 40, Chaoyang District, Beijing 100029, China. E-mail: ldh@mail.iap.ac.cn

Abstract

A recent study revealed that cold winter outbreaks over the Middle East and southeastern Europe are caused mainly by the northeast–southwest (NE–SW) tilting of European blocking (EB) associated with the positive-phase North Atlantic Oscillation (NAO+). Here, the North Atlantic conditions are examined that determine the EB tilting direction, defined as being perpendicular to the dipole anomaly orientation. Using daily reanalysis data, the NAO+ events are classified into strong (SJN) and weak (WJN) North Atlantic jet types. A composite analysis shows that the EB is generally stronger and located more westward and southward during SJN events than during WJN events. During SJN events, the NAO+ and EB dipoles exhibit NE–SW tilting, which leads to strong cold advection and large negative temperature anomalies over the Middle East and southeastern Europe. In contrast, northwest–southeast (NW–SE) tilting without strong negative temperature anomalies over the Middle East is seen during WJN events.

A nonlinear multiscale interaction model is modified to investigate the physical mechanism through which the North Atlantic jet (NAJ) affects EB with the NAO+ event. It is shown that, when the NAJ is stronger, an amplified EB event forms because of enhanced NAO+ energy dispersion. For a strong (weak) NAJ, the EB tends to occur in a relatively low-latitude (high latitude) region because of the suppressive (favorable) role of intensified (reduced) zonal wind in high latitudes. It exhibits NE–SW (NW–SE) tilting because the blocking region corresponds to negative-over-positive (opposite) zonal wind anomalies. The results suggest that the NAJ can modulate the tilting direction of EB, leading to different effects over the Middle East.

Corresponding author address: Dr. Dehai Luo, RCE-TEA, Institute of Atmospheric Physics, Chinese Academy of Sciences, Mailbox 9804, Huayanli 40, Chaoyang District, Beijing 100029, China. E-mail: ldh@mail.iap.ac.cn
Save