Diversity, Nonlinearity, Seasonality, and Memory Effect in ENSO Simulation and Prediction Using Empirical Model Reduction

Chen Chen Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Chen Chen in
Current site
Google Scholar
PubMed
Close
,
Mark A. Cane Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Mark A. Cane in
Current site
Google Scholar
PubMed
Close
,
Naomi Henderson Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Naomi Henderson in
Current site
Google Scholar
PubMed
Close
,
Dong Eun Lee Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Dong Eun Lee in
Current site
Google Scholar
PubMed
Close
,
David Chapman Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by David Chapman in
Current site
Google Scholar
PubMed
Close
,
Dmitri Kondrashov Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Dmitri Kondrashov in
Current site
Google Scholar
PubMed
Close
, and
Mickaël D. Chekroun Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Mickaël D. Chekroun in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A suite of empirical model experiments under the empirical model reduction framework are conducted to advance the understanding of ENSO diversity, nonlinearity, seasonality, and the memory effect in the simulation and prediction of tropical Pacific sea surface temperature (SST) anomalies. The model training and evaluation are carried out using 4000-yr preindustrial control simulation data from the coupled model GFDL CM2.1. The results show that multivariate models with tropical Pacific subsurface information and multilevel models with SST history information both improve the prediction skill dramatically. These two types of models represent the ENSO memory effect based on either the recharge oscillator or the time-delayed oscillator viewpoint. Multilevel SST models are a bit more efficient, requiring fewer model coefficients. Nonlinearity is found necessary to reproduce the ENSO diversity feature for extreme events. The nonlinear models reconstruct the skewed probability density function of SST anomalies and improve the prediction of the skewed amplitude, though the role of nonlinearity may be slightly overestimated given the strong nonlinear ENSO in GFDL CM2.1. The models with periodic terms reproduce the SST seasonal phase locking but do not improve the prediction appreciably. The models with multiple ingredients capture several ENSO characteristics simultaneously and exhibit overall better prediction skill for more diverse target patterns. In particular, they alleviate the spring/autumn prediction barrier and reduce the tendency for predicted values to lag the target month value.

Corresponding author address: Chen Chen, Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964. E-mail: cchen@ldeo.columbia.edu

Abstract

A suite of empirical model experiments under the empirical model reduction framework are conducted to advance the understanding of ENSO diversity, nonlinearity, seasonality, and the memory effect in the simulation and prediction of tropical Pacific sea surface temperature (SST) anomalies. The model training and evaluation are carried out using 4000-yr preindustrial control simulation data from the coupled model GFDL CM2.1. The results show that multivariate models with tropical Pacific subsurface information and multilevel models with SST history information both improve the prediction skill dramatically. These two types of models represent the ENSO memory effect based on either the recharge oscillator or the time-delayed oscillator viewpoint. Multilevel SST models are a bit more efficient, requiring fewer model coefficients. Nonlinearity is found necessary to reproduce the ENSO diversity feature for extreme events. The nonlinear models reconstruct the skewed probability density function of SST anomalies and improve the prediction of the skewed amplitude, though the role of nonlinearity may be slightly overestimated given the strong nonlinear ENSO in GFDL CM2.1. The models with periodic terms reproduce the SST seasonal phase locking but do not improve the prediction appreciably. The models with multiple ingredients capture several ENSO characteristics simultaneously and exhibit overall better prediction skill for more diverse target patterns. In particular, they alleviate the spring/autumn prediction barrier and reduce the tendency for predicted values to lag the target month value.

Corresponding author address: Chen Chen, Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY 10964. E-mail: cchen@ldeo.columbia.edu
Save
  • Alexander, M. A., L. Matrosova, C. Penland, J. D. Scott, and P. Chang, 2008: Forecasting Pacific SSTs: Linear inverse model predictions of the PDO. J. Climate, 21, 385402, doi:10.1175/2007JCLI1849.1.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., and B. Wang, 2001: Mechanisms of locking of the El Niño and La Niña mature phases to boreal winter. J. Climate, 14, 21642176, doi:10.1175/1520-0442(2001)014<2164:MOLOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 23992412, doi:10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and M. K. Tippett, 2013: Predictions of Niño3.4 SST in CFSv1 and CFSv2: A diagnostic comparison. Climate Dyn., 41, 16151633, doi:10.1007/s00382-013-1845-2.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. K. Tippett, M. L. L’Heureux, S. Li, and D. G. DeWitt, 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631651, doi:10.1175/BAMS-D-11-00111.1.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci., 46, 16871712, doi:10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blumenthal, M. B., 1991: Predictability of a coupled ocean–atmosphere model. J. Climate, 4, 766784, doi:10.1175/1520-0442(1991)004<0766:POACOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2015: ENSO and greenhouse warming. Nat. Climate Change, 5, 849859, doi:10.1038/nclimate2743.

  • Cane, M. A., S. E. Zebiak, and S. C. Dolan, 1986: Experimental forecasts of El Niño. Nature, 321, 827832, doi:10.1038/321827a0.

  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, doi:10.1175/BAMS-D-13-00117.1.

    • Search Google Scholar
    • Export Citation
  • Chapman, D., M. A. Cane, N. Henderson, D. E. Lee, and C. Chen, 2015: A vector autoregressive ENSO prediction model. J. Climate, 28, 85118520, doi:10.1175/JCLI-D-15-0306.1.

    • Search Google Scholar
    • Export Citation
  • Chekroun, M. D., D. Kondrashov, and M. Ghil, 2011: Predicting stochastic systems by noise sampling, and application to the El Niño–Southern Oscillation. Proc. Natl. Acad. Sci. USA, 108, 11 76611 771, doi:10.1073/pnas.1015753108.

    • Search Google Scholar
    • Export Citation
  • Chen, D., S. E. Zebiak, A. J. Busalacchi, and M. A. Cane, 1995: An improved procedure for EI Niño forecasting: Implications for predictability. Science, 269, 16991702, doi:10.1126/science.269.5231.1699.

    • Search Google Scholar
    • Export Citation
  • Chen, D., M. Cane, A. Kaplan, S. E. Zebiak, and D. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428, 733736, doi:10.1038/nature02439.

    • Search Google Scholar
    • Export Citation
  • Chen, D., and Coauthors, 2015: Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci., 8, 339345, doi:10.1038/ngeo2399.

    • Search Google Scholar
    • Export Citation
  • Choi, K.-Y., G. A. Vecchi, and A. T. Wittenberg, 2013: ENSO transition, duration, and amplitude asymmetries: Role of the nonlinear wind stress coupling in a conceptual model. J. Climate, 26, 94629476, doi:10.1175/JCLI-D-13-00045.1.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and P. D. Sardeshmukh, 2010: Removing ENSO-related variations from the climate record. J. Climate, 23, 19571978, doi:10.1175/2009JCLI2735.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., K. M. Cobb, J. C. Furtado, N. Schneider, B. T. Anderson, A. Bracco, M. A. Alexander, and D. J. Vimont, 2010: Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat. Geosci., 3, 762765, doi:10.1038/ngeo984.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., S. Hu, M. Lengaigne, and E. Guilyardi, 2015: The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Climate Dyn., 44, 13811401, doi:10.1007/s00382-014-2126-4.

    • Search Google Scholar
    • Export Citation
  • Flügel, M., and P. Chang, 1998: Does the predictability of ENSO depend on the seasonal cycle? J. Atmos. Sci., 55, 32303243, doi:10.1175/1520-0469(1998)055<3230:DTPOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gebbie, G., I. Eisenman, A. Wittenberg, and E. Tziperman, 2007: Modulation of westerly wind bursts by sea surface temperature: A semistochastic feedback for ENSO. J. Atmos. Sci., 64, 32813295, doi:10.1175/JAS4029.1.

    • Search Google Scholar
    • Export Citation
  • Hirahara, S., M. Ishii, and Y. Fukuda, 2014: Centennial-scale sea surface temperature analysis and its uncertainty. J. Climate, 27, 5775, doi:10.1175/JCLI-D-12-00837.1.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, doi:10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Climate, 54, 811829, doi:10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Climate, 54, 830847, doi:10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, S. D., D. S. Battisti, and E. S. Sarachik, 2000a: Empirically derived Markov models and prediction of tropical Pacific sea surface temperature anomalies. J. Climate, 13, 317, doi:10.1175/1520-0442(2000)013<0003:EDMMAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, S. D., D. S. Battisti, and E. S. Sarachik, 2000b: Seasonality in an empirically derived Markov model of tropical Pacific sea surface temperature anomalies. J. Climate, 13, 33273335, doi:10.1175/1520-0442(2000)013<3327:SIAEDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., and J.-S. Kug, 2002: El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies. J. Geophys. Res., 107, 4372, doi:10.1029/2001JD000393.

    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, doi:10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18 56718 589, doi:10.1029/97JC01736.

    • Search Google Scholar
    • Export Citation
  • Karamperidou, C., M. A. Cane, U. Lall, and A. T. Wittenberg, 2014: Intrinsic modulation of ENSO predictability viewed through a local Lyapunov lens. Climate Dyn., 42, 253270, doi:10.1007/s00382-013-1759-z.

    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., 2013: Can we distinguish canonical El Niño from Modoki? Geophys. Res. Lett., 40, 52465251, doi:10.1002/grl.51007.

    • Search Google Scholar
    • Export Citation
  • Kondrashov, D., S. Kravtsov, A. W. Robertson, and M. Ghil, 2005: A hierarchy of data-based ENSO models. J. Climate, 18, 44254444, doi:10.1175/JCLI3567.1.

    • Search Google Scholar
    • Export Citation
  • Kondrashov, D., S. Kravtsov, and M. Ghil, 2011: Signatures of nonlinear dynamics in an idealized atmospheric model. J. Atmos. Sci., 68, 312, doi:10.1175/2010JAS3524.1.

    • Search Google Scholar
    • Export Citation
  • Kondrashov, D., M. D. Chekroun, and M. Ghil, 2015: Data-driven non-Markovian closure models. Physica D, 297, 3355, doi:10.1016/j.physd.2014.12.005.

    • Search Google Scholar
    • Export Citation
  • Kravtsov, S., D. Kondrashov, and M. Ghil, 2005: Multilevel regression modeling of nonlinear processes. J. Climate, 18, 44044424, doi:10.1175/JCLI3544.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, doi:10.1175/2008JCLI2624.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., J. Choi, S.-I. An, F.-F. Jin, and A. T. Wittenberg, 2010: Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J. Climate, 23, 12261239, doi:10.1175/2009JCLI3293.1.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2002: ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J. Climate, 15, 11181140, doi:10.1175/1520-0442(2002)015<1118:EWENOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005: On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32, L13705, doi:10.1029/2005GL022738.

    • Search Google Scholar
    • Export Citation
  • Larson, S. M., and B. P. Kirtman, 2015: Revisiting ENSO coupled instability theory and SST error growth in a fully coupled model. J. Climate, 28, 47244742, doi:10.1175/JCLI-D-14-00731.1.

    • Search Google Scholar
    • Export Citation
  • Lee, D. E., D. Chapman, N. Henderson, C. Chen, and M. A. Cane, 2015: Multilevel vector autoregressive prediction of sea surface temperature in the north tropical Atlantic Ocean and the Caribbean Sea. Climate Dyn., 112, doi:10.1007/s00382-015-2825-5.

    • Search Google Scholar
    • Export Citation
  • Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, doi:10.1029/2010GL044007.

    • Search Google Scholar
    • Export Citation
  • McCullagh, P., and J. A. Nelder, 1989: Generalized Linear Models. 2nd ed. CRC Monographs on Statistics and Applied Probability, Vol. 37, Chapman and Hall, 511 pp.

  • McPhaden, M. J., 2003: Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys. Res. Lett., 30, 19951998, doi:10.1029/2003GL016872.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., F.-F. Jin, and H.-H. Syu, 2000: Variations in ENSO phase locking. J. Climate, 13, 25702590, doi:10.1175/1520-0442(2000)013<2570:VIEPL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Newman, M., P. D. Sardeshmukh, C. R. Winkler, and J. S. Whitaker, 2003: A study of subseasonal predictability. Mon. Wea. Rev., 131, 17151732, doi:10.1175//2558.1.

    • Search Google Scholar
    • Export Citation
  • Newman, M., M. A. Alexander, and J. D. Scott, 2011a: An empirical model of tropical ocean dynamics. Climate Dyn., 37, 18231841, doi:10.1007/s00382-011-1034-0.

    • Search Google Scholar
    • Export Citation
  • Newman, M., S.-I. Shin, and M. A. Alexander, 2011b: Natural variation in ENSO flavors. Geophys. Res. Lett., 38, L14705, doi:10.1029/2011GL047658.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., and C. Deser, 2010: Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 58265843, doi:10.1175/2010JCLI3592.1.

    • Search Google Scholar
    • Export Citation
  • Penland, C., 1989: Random forcing and forecasting using principal oscillation pattern analysis. Mon. Wea. Rev., 117, 21652185, doi:10.1175/1520-0493(1989)117<2165:RFAFUP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Penland, C., 1996: A stochastic model of IndoPacific sea surface temperature anomalies. Physica D, 98, 534558, doi:10.1016/0167-2789(96)00124-8.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and T. Magorian, 1993: Prediction of Niño 3 sea surface temperatures using linear inverse modeling. J. Climate, 6, 10671076, doi:10.1175/1520-0442(1993)006<1067:PONSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 1995: The optimal growth of tropical sea surface temperature anomalies. J. Climate, 8, 19992024, doi:10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and L. Matrosova, 1998: Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling. J. Climate, 11, 483496, doi:10.1175/1520-0442(1998)011<0483:POTASS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. D. Sardeshmukh, 2012: Alternative interpretations of power-law distributions found in nature. Chaos, 22, 023119, doi:10.1063/1.4706504.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517, doi:10.1175/JCLI3812.1.

  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 32833287, doi:10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., and B. Dewitte, 2015: Strong and moderate nonlinear El Niño regimes. Climate Dyn., 119, doi:10.1007/s00382-015-2665-3.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, doi:10.1029/2011GL047364.

    • Search Google Scholar
    • Export Citation
  • Tangang, F. T., B. Tang, A. H. Monahan, and W. W. Hsieh, 1998: Forecasting ENSO events: A neural network–extended EOF approach. J. Climate, 11, 2941, doi:10.1175/1520-0442(1998)011<0029:FEEANN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, C. J., and D. S. Battisti, 2001: A linear stochastic dynamical model of ENSO. Part II: Analysis. J. Climate, 14, 445466, doi:10.1175/1520-0442(2001)014<0445:ALSDMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., H. U. Voss, and R. Pasmanter, 2001: Empirical dynamical system modeling of ENSO using nonlinear inverse techniques. J. Phys. Oceanogr., 31, 15791598, doi:10.1175/1520-0485(2001)031<1579:EDSMOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., A. G. Barnston, and S. Li, 2012: Performance of recent multimodel ENSO forecasts. J. Appl. Meteor. Climatol., 51, 637654, doi:10.1175/JAMC-D-11-093.1.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., L. Stone, M. A. Cane, and H. Jarosh, 1994: El Nino chaos: Overlapping of resonances between the seasonal cycle and the Pacific Ocean–atmosphere oscillator. Science, 264, 7274, doi:10.1126/science.264.5155.72.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., M. A. Cane, and S. E. Zebiak, 1995: Irregularity and locking to the seasonal cycle in an ENSO prediction model as explained by the quasi-periodicity route to chaos. J. Atmos. Sci., 52, 293306, doi:10.1175/1520-0469(1995)052<0293:IALTTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., S. E. Zebiak, and M. A. Cane, 1997: Mechanisms of seasonal–ENSO interaction. J. Atmos. Sci., 54, 6171, doi:10.1175/1520-0469(1997)054<0061:MOSEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., M. A. Cane, S. E. Zebiak, Y. Xue, and B. Blumenthal, 1998: Locking of El Niño’s peak time to the end of the calendar year in the delayed oscillator picture of ENSO. J. Climate, 11, 21912199, doi:10.1175/1520-0442(1998)011<2191:LOENOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., A. T. Wittenberg, and A. Rosati, 2006: Reassessing the role of stochastic forcing in the 1997–1998 El Niño. Geophys. Res. Lett., 33, L01706, doi:10.1029/2005GL024738.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., M. A. Alexander, and M. Newman, 2014: Optimal growth of central and east Pacific ENSO events. Geophys. Res. Lett., 41, 40274034, doi:10.1002/2014GL059997.

    • Search Google Scholar
    • Export Citation
  • Wetherill, G. B., 1986: Regression Analysis with Applications. Monographs on Statistics and Applied Probability, Vol. 27, Chapman and Hall, 311 pp.

  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, doi:10.1029/2009GL038710.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., A. Rosati, N.-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698722, doi:10.1175/JCLI3631.1.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., A. Rosati, T. L. Delworth, G. A. Vecchi, and F. Zeng, 2014: ENSO modulation: Is it decadally predictable? J. Climate, 27, 26672681, doi:10.1175/JCLI-D-13-00577.1.

    • Search Google Scholar
    • Export Citation
  • Wu, R., B. P. Kirtman, and H. van den Dool, 2009: An analysis of ENSO prediction skill in the CFS retrospective forecasts. J. Climate, 22, 18011818, doi:10.1175/2008JCLI2565.1.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., M. A. Cane, S. E. Zebiak, and M. B. Blumenthal, 1994: On the prediction of ENSO: A study with a low-order Markov model. Tellus, 46A, 512528, doi:10.1034/j.1600-0870.1994.00013.x.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., M. A. Cane, S. E. Zebiak, and T. N. Palmer, 1997: Predictability of a coupled model of ENSO using singular vector analysis. Part II: Optimal growth and forecast skill. Mon. Wea. Rev., 125, 20572073, doi:10.1175/1520-0493(1997)125<2057:POACMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., A. Leetmaa, and M. Ji, 2000: ENSO prediction with Markov models: The impact of sea level. J. Climate, 13, 849871, doi:10.1175/1520-0442(2000)013<0849:EPWMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., M. Chen, A. Kumar, Z.-Z. Hu, and W. Wang, 2013: Prediction skill and bias of tropical Pacific sea surface temperatures in the NCEP Climate Forecast System version 2. J. Climate, 26, 53585378, doi:10.1175/JCLI-D-12-00600.1.

    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278, doi:10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 323 102 8
PDF Downloads 325 63 4