Predicting the Climatology of Tornado Occurrences in North America with a Bayesian Hierarchical Modeling Framework

Vincent Y. S. Cheng Ecological Modeling Laboratory, Department of Physical and Environmental Sciences, University of Toronto, Toronto, and Risk Sciences International, Ottawa, Ontario, Canada

Search for other papers by Vincent Y. S. Cheng in
Current site
Google Scholar
PubMed
Close
,
George B. Arhonditsis Ecological Modeling Laboratory, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada

Search for other papers by George B. Arhonditsis in
Current site
Google Scholar
PubMed
Close
,
David M. L. Sills Cloud Physics and Severe Weather Research Section, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, Canada

Search for other papers by David M. L. Sills in
Current site
Google Scholar
PubMed
Close
,
William A. Gough Climate Laboratory, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario, Canada

Search for other papers by William A. Gough in
Current site
Google Scholar
PubMed
Close
, and
Heather Auld Risk Sciences International, Ottawa, Ontario, Canada

Search for other papers by Heather Auld in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Destruction and fatalities from recent tornado outbreaks in North America have raised considerable concerns regarding their climatic and geographic variability. However, regional characterization of tornado activity in relation to large-scale climatic processes remains highly uncertain. Here, a novel Bayesian hierarchical framework is developed for elucidating the spatiotemporal variability of the factors underlying tornado occurrence in North America. It is demonstrated that regional variability of tornado activity can be characterized using a hierarchical parameterization of convective available potential energy, storm relative helicity, and vertical wind shear quantities. It is shown that the spatial variability of tornado occurrence during the warm summer season can be explained by convective available potential energy and storm relative helicity alone, while vertical wind shear is clearly better at capturing the spatial variability of the cool season tornado activity. The results suggest that the Bayesian hierarchical modeling approach is effective for understanding the regional tornadic environment and in forming the basis for establishing tornado prognostic tools in North America.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0404.s1.

Corresponding author address: George B. Arhonditsis, Dept. of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto ON M1C 1A4, Canada. E-mail: georgea@utsc.utoronto.ca

Abstract

Destruction and fatalities from recent tornado outbreaks in North America have raised considerable concerns regarding their climatic and geographic variability. However, regional characterization of tornado activity in relation to large-scale climatic processes remains highly uncertain. Here, a novel Bayesian hierarchical framework is developed for elucidating the spatiotemporal variability of the factors underlying tornado occurrence in North America. It is demonstrated that regional variability of tornado activity can be characterized using a hierarchical parameterization of convective available potential energy, storm relative helicity, and vertical wind shear quantities. It is shown that the spatial variability of tornado occurrence during the warm summer season can be explained by convective available potential energy and storm relative helicity alone, while vertical wind shear is clearly better at capturing the spatial variability of the cool season tornado activity. The results suggest that the Bayesian hierarchical modeling approach is effective for understanding the regional tornadic environment and in forming the basis for establishing tornado prognostic tools in North America.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0404.s1.

Corresponding author address: George B. Arhonditsis, Dept. of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto ON M1C 1A4, Canada. E-mail: georgea@utsc.utoronto.ca

Supplementary Materials

    • Supplemental Materials (DOCX 4.10 MB)
Save
  • Anderson, C. J., C. K. Wikle, Q. Zhou, and J. A. Royle, 2007: Population influences on tornado reports in the United States. Wea. Forecasting, 22, 571–579, doi:10.1175/WAF997.1.

    • Search Google Scholar
    • Export Citation
  • Arhonditsis, G. B., and M. T. Brett, 2005: Eutrophication model for Lake Washington (USA): Part I. Model description and sensitivity analysis. Ecol. Modell., 187, 140–178, doi:10.1016/j.ecolmodel.2005.01.040.

    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., A. J. Krmenec, and R. Schwantes, 2008: Vulnerability due to nocturnal tornadoes. Wea. Forecasting, 23, 795–807, doi:10.1175/2008WAF2222132.1.

    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., and M. St. Laurent, 2009: Bow echo mesovortices. Part II: Their genesis. Mon. Wea. Rev., 137, 1514–1532, doi:10.1175/2008MWR2650.1.

    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., and V. A. Gensini, 2013: Variability of central United States April–May tornado day likelihood by phase of the Madden–Julian oscillation. Geophys. Res. Lett., 40, 2790–2795, doi:10.1002/grl.50522.

    • Search Google Scholar
    • Export Citation
  • Belanger, J. I., J. A. Curry, and C. D. Hoyos, 2009: Variability in tornado frequency associated with U.S. landfalling tropical cyclones. Geophys. Res. Lett., 36, L17805, doi:10.1029/2009GL040013.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2009: Proximity soundings for severe convection for Europe and the United States from reanalysis data. Atmos. Res., 93, 546–553, doi:10.1016/j.atmosres.2008.10.005.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell, and J. Cooper, 1994: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9, 606–618, doi:10.1175/1520-0434(1994)009<0606:OTEOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., J. W. Lee, and J. P. Craven, 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res., 67–68, 73–94, doi:10.1016/S0169-8095(03)00045-0.

    • Search Google Scholar
    • Export Citation
  • Brooks, S. P., and A. Gelman, 1998: General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat., 7, 434–455, doi:10.1080/10618600.1998.10474787.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., Jr., 1982: Trends in tornado frequencies: Fact or fallacy. Preprints, 12th Conf. on Severe Local Storms, Tulsa, OK, Amer. Meteor. Soc, 42–44.

  • Cheng, V. Y. S., G. B. Arhonditsis, D. M. L. Sills, H. Auld, M. W. Shephard, W. A. Gough, and J. Klaassen, 2013: Probability of tornado occurrence across Canada. J. Climate, 26, 9415–9428, doi:10.1175/JCLI-D-13-00093.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, V. Y. S., G. B. Arhonditsis, D. M. L. Sills, W. A. Gough, and H. Auld, 2015: A Bayesian modelling framework for tornado occurrences in North America. Nat. Commun., 6, 6599, doi:10.1038/ncomms7599.

    • Search Google Scholar
    • Export Citation
  • Cook, A. R., and J. T. Schaefer, 2008: The relation of El Niño–Southern Oscillation (ENSO) to winter tornado outbreaks. Mon. Wea. Rev., 136, 3121–3137, doi:10.1175/2007MWR2171.1.

    • Search Google Scholar
    • Export Citation
  • Craven, J. P., H. E. Brooks, and J. A. Hart, 2004: Baseline climatology of sounding derived parameters associated with deep, moist convection. Natl. Wea. Dig., 28, 13–24.

    • Search Google Scholar
    • Export Citation
  • Davies, J. M., 2006: Tornadoes in environments with small helicity and/or high LCL heights. Wea. Forecasting, 21, 579–594, doi:10.1175/WAF928.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., D. Burgess, and M. Foster, 1990: Test of helicity as a tornado forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588–592.

  • Diffenbaugh, N. S., M. Scherer, and R. J. Trapp, 2013: Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc. Natl. Acad. Sci. USA, 110, 16 361–16 366, doi:10.1073/pnas.1307758110.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and D. W. Burgess, 1988: On some issues of United States tornado climatology. Mon. Wea. Rev., 116, 495–501, doi:10.1175/1520-0493(1988)116<0495:OSIOUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560–581, doi:10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, G. W. Carbin, and H. E. Brooks, 2012: The tornadoes of spring 2011 in the USA: An historical perspective. Weather, 67, 88–94, doi:10.1002/wea.1902.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., A. R. Dean, R. L. Thompson, and B. T. Smith, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part III: Tropical cyclone tornadoes. Wea. Forecasting, 27, 1507–1519, doi:10.1175/WAF-D-11-00117.1.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., J. G. LaDue, J. T. Ferree, K. Scharfenberg, C. Maier, and W. L. Coulbourne, 2013: Tornado intensity estimation: Past, present, and future. Bull. Amer. Meteor. Soc., 94, 641–653, doi:10.1175/BAMS-D-11-00006.1.

    • Search Google Scholar
    • Export Citation
  • Etkin, D., and M. Leduc, 1994: A non-tornadic severe storm climatology of southern Ontario adjusted for population bias: Some surprising results. Can. Meteor. Oceanic Soc. Bull., 22, 4–8.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1971: Proposed characterization of tornadoes and hurricanes by area and intensity. University of Chicago Satellite and Mesometeorology Research Project Research Paper 91, 42 pp.

  • Gelman, A., and J. Hill, 2006: Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, 648 pp.

  • Gelman, A., J. Carlin, H. S. Stern, and D. B. Rubin, 2004: Bayesian Data Analysis. 2nd ed. Chapman and Hall/CRC, 690 pp.

  • Grams, J. S., R. L. Thompson, D. V. Snively, J. A. Prentice, G. M. Hodges, and L. J. Reames, 2012: A climatology and comparison of parameters for significant tornado events in the United States. Wea. Forecasting, 27, 106–123, doi:10.1175/WAF-D-11-00008.1.

    • Search Google Scholar
    • Export Citation
  • Grazulis, T. P., and R. F. Abbey Jr., 1983: 103 years of violent tornadoes: Patterns of serendipity, population, and mesoscale topography. Preprints, 13th Conf. on Severe Local Storms, Tulsa, OK, Amer. Meteor. Soc, 124–127.

  • Hagemeyer, B. C., and G. K. Schmocker, 1991: Characteristics of east-central Florida tornado environments. Wea. Forecasting, 6, 499–514, doi:10.1175/1520-0434(1991)006<0499:COECFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hanstrum, B. N., G. A. Mills, A. Watson, J. P. Monteverdi, and C. A. Doswell III, 2002: The cool-season tornadoes of California and southern Australia. Wea. Forecasting, 17, 705–722, doi:10.1175/1520-0434(2002)017<0705:TCSTOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • King, P. W., 1997: On the absence of population bias in the tornado climatology of southwestern Ontario. Wea. Forecasting, 12, 939–946, doi:10.1175/1520-0434(1997)012<0939:OTAOPB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • King, P. W., M. J. Leduc, D. M. Sills, N. R. Donaldson, D. R. Hudak, P. Joe, and B. P. Murphy, 2003: Lake breezes in southern Ontario and their relation to tornado climatology. Wea. Forecasting, 18, 795–807, doi:10.1175/1520-0434(2003)018<0795:LBISOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech., 19, 369–402, doi:10.1146/annurev.fl.19.010187.002101.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359–377, doi:10.1175/1520-0469(1983)040<0359:ASOTTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lambert, D., 1992: Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 34, 1–14, doi:10.2307/1269547.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., and R. B. Wilhelmson, 1997: The numerical simulation of non-supercell tornadogenesis. Part I: Initiation and evolution of pretornadic misocyclone circulations along a dry outflow boundary. J. Atmos. Sci., 54, 32–60, doi:10.1175/1520-0469(1997)054<0032:TNSONS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and C. A. Doswell, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 1184–1197, doi:10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lunn, D. J., A. Thomas, N. Best, and D. Spiegelhalter, 2000: WinBUGS—A Bayesian modeling framework: Concepts, structure, and extensibility. Stat. Comput., 10, 325–337, doi:10.1023/A:1008929526011.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2009: Tornadogenesis: Our current understanding, forecasting considerations, and questions to guide future research. Atmos. Res., 93, 3–10, doi:10.1016/j.atmosres.2008.09.015.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243–275, doi:10.1175/JAS-D-13-0159.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., E. N. Rasmussen, and J. M. Straka, 1998: The occurrence of tornadoes in supercells interacting with boundaries during VORTEX-95. Wea. Forecasting, 13, 852–859, doi:10.1175/1520-0434(1998)013<0852:TOOTIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2003: Tornadogenesis Resulting from the transport of circulation by a downdraft: Idealized numerical simulations. J. Atmos. Sci., 60, 795–823, doi:10.1175/1520-0469(2003)060<0795:TRFTTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCarthy, P. J., D. Carlsen, and J. Slipec, 2008: Elie, Manitoba, Canada, June 22, 2007: Canada’s first F5 tornado. Preprints, 24th Conf. on Severe Local Storms, Albany, NY, Amer. Meteor. Soc., P9.10. [Available online at https://ams.confex.com/ams/pdfpapers/141718.pdf.]

  • McCaul, E. W., 1991: Buoyancy and shear characteristics of hurricane–tornado environments. Mon. Wea. Rev., 119, 1954–1978, doi:10.1175/1520-0493(1991)119<1954:BASCOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343–360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Monteverdi, J. P., C. A. Doswell, and G. S. Lipari, 2003: Shear parameter thresholds for forecasting tornadic thunderstorms in northern and central California. Wea. Forecasting, 18, 357–370, doi:10.1175/1520-0434(2003)018<0357:SPTFFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Paruk, B. J., and S. R. Blackwell, 1994: A severe thunderstorm climatology for Alberta. Natl. Wea. Dig., 19, 27–33.

  • Rasmussen, E. N., 2003: Refined supercell and tornado forecast parameters. Wea. Forecasting, 18, 530–535, doi:10.1175/1520-0434(2003)18<530:RSATFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 1148–1164, doi:10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., P. Bieringer, X. Niu, and B. Whissel, 2003: An improved estimate of tornado occurrence in the Central Plains of the United States. Mon. Wea. Rev., 131, 1026–1031, doi:10.1175/1520-0493(2003)131<1026:AIEOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sadraddini, S., M. E. Azim, Y. Shimoda, S. Bhavsar, S. M. Backus, and G. B. Arhonditsis, 2011: Temporal contaminant trends in Lake Erie fish: A dynamic linear modeling analysis. Ecotoxicol. Environ. Saf., 74, 2203–2214, doi:10.1016/j.ecoenv.2011.07.031.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., and J. G. Galway, 1982: Population biases in tornado climatology. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 51–54.

  • Schaefer, J. T., and R. Edwards, 1999: The SPC tornado/severe thunderstorm database. Preprints, 11th Conf. on Applied Climatology, Dallas, TX, Amer. Meteor. Soc., 215–220.

  • Sills, D., J. W. Wilson, P. I. Joe, D. W. Burgess, R. M. Webb, and N. I. Fox, 2004: The 3 November tornadic event during Sydney 2000: Storm evolution and the role of low-level boundaries. Wea. Forecasting, 19, 22–42, doi:10.1175/1520-0434(2004)019<0022:TNTEDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sills, D., V. Cheng, P. McCarthy, B. Rousseau, J. Waller, L. Elliott, J. Klaassen, and H. Auld, 2012: Using tornado, lightning and population data to identify tornado prone areas in Canada. Preprints, 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., P59.

  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 1114–1135, doi:10.1175/WAF-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Snider, C. R., 1977: A look at Michigan tornado statistics. Mon. Wea. Rev., 105, 1341–1342, doi:10.1175/1520-0493(1977)105<1341:ALAMTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tecson, J. J., T. T. Fujita, and R. F. Abbey Jr., 1983: Statistical analyses of U.S. tornadoes based on the geographic distribution of population, community, and other parameters. Preprints, 13th Conf. on Severe Local Storms, Tulsa, OK, Amer. Meteor. Soc., 124–127.

  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the rapid update cycle. Wea. Forecasting, 18, 1243–1261, doi:10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 1136–1154, doi:10.1175/WAF-D-11-00116.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, A. R. Dean, and P. T. Marsh, 2014: Spatial distributions of tornadic near-storm environments by convective mode. Electron. J. Severe Storms Meteor., 8 (5). [Available online at http://ejssm.org/ojs/index.php/ejssm/article/view/125/93.]

  • Tippett, M. K., A. H. Sobel, and S. J. Camargo, 2012: Association of U.S. tornado occurrence with monthly environmental parameters. Geophys. Res. Lett., 39, L02801, doi:10.1029/2011GL050368.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., A. H. Sobel, S. J. Camargo, and J. T. Allen, 2014: An empirical relation between U.S. tornado activity and monthly environmental parameters. J. Climate, 27, 2983–2999, doi:10.1175/JCLI-D-13-00345.1.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and M. L. Weisman, 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131, 2804–2823, doi:10.1175/1520-0493(2003)131<2804:LMWSLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., S. A. Tessendorf, E. S. Godfrey, and H. E. Brooks, 2005: Tornadoes from squall lines and bow echoes. Part I: Climatological distribution. Wea. Forecasting, 20, 23–34, doi:10.1175/WAF-835.1.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., N. S. Diffenbaugh, H. E. Brooks, M. E. Baldwin, E. D. Robinson, and J. S. Pal, 2007: Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Natl. Acad. Sci. USA, 104, 19 719–19 723, doi:10.1073/pnas.0705494104.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and J. W. Wilson, 1989: Non-supercell tornadoes. Mon. Wea. Rev., 117, 1113–1140, doi:10.1175/1520-0493(1989)117<1113:NST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Witten, D. E., 1985: May 31, 1985 a deadly tornado outbreak. Weatherwise, 38, 193–198, doi:10.1080/00431672.1985.9933314.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 522 214 16
PDF Downloads 379 149 10