• Bentsen, M., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev. Discuss., 6, 687720, doi:10.5194/gmd-6-687-2013.

    • Search Google Scholar
    • Export Citation
  • Bi, D., and Coauthors, 2013: The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteor. Oceanogr. J., 63, 4164.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., and Coauthors, 2013: Sea level change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1137–1216.

    • Search Google Scholar
    • Export Citation
  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 525–582.

  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, doi:10.1175/JCLI-D-11-00560.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., and Coauthors, 2012: Human-induced global ocean warming on multidecadal timescales. Nat. Climate Change, 2, 524529, doi:10.1038/nclimate1553.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., 2000: Vertical heat transports in the ocean and their effect an time-dependent climate change. Climate Dyn., 16, 501515, doi:10.1007/s003820000059.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2011: The GFDL CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. J. Climate, 24, 35203544, doi:10.1175/2011JCLI3964.1.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2015: Sampling the physical ocean in CMIP6 simulations. World Climate Research Panel, 68 pp. [Available online at http://www.clivar.org/documents/sampling-physical-ocean-cmip6-simulations.]

  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Jeffrey, S., , L. D. Rotstayn, , M. A. Collier, , S. M. Dravitzki, , C. Hamalainen, , C. Moeseneder, , K.-K. Wong, , and J. I. Syktus, 2013: Australia’s CMIP5 submission using the CSIRO-Mk3.6 model. Aust. Meteor. Oceanogr. J., 63, 113.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., and Coauthors, 2013: Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J. Adv. Model. Earth Syst., 5, 422446, doi:10.1002/jame.20023.

    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., , and J. M. Gregory, 2012: Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett., 39, L18608, doi:10.1029/2012GL052952.

    • Search Google Scholar
    • Export Citation
  • Liepert, B. G., , and M. Previdi, 2012: Inter-model variability and biases of the global water cycle in CMIP3 coupled climate models. Environ. Res. Lett., 7, 014006, doi:10.1088/1748-9326/7/1/014006.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., and Coauthors, 2011: The HadGEM2 family of Met Office Unified Model climate configurations. Geosci. Model Dev., 4, 723757, doi:10.5194/gmd-4-723-2011.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., , R. Moss, , K. E. Taylor, , V. Eyring, , R. J. Stouffer, , S. Bony, , and B. Stevens, 2014: Climate model intercomparisons: Preparing for the next phase. Eos, Trans. Amer. Geophys. Union, 95, 7778, doi:10.1002/2014EO090001.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213241, doi:10.1007/s10584-011-0156-z.

    • Search Google Scholar
    • Export Citation
  • Mignot, J., , and S. Bony, 2013: Presentation and analysis of the IPSL and CNRM climate models used in CMIP5. Climate Dyn., 40, 2089, doi:10.1007/s00382-013-1720-1.

    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., , and D. J. McNeall, 2014: Internal variability of Earth’s energy budget simulated by CMIP5 climate models. Environ. Res. Lett., 9, 034016, doi:10.1088/1748-9326/9/3/034016.

    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., , D. J. McNeall, , and N. J. Dunstone, 2011: Importance of the deep ocean for estimating decadal changes in Earth’s radiation balance. Geophys. Res. Lett., 38, L13707, doi:10.1029/2011GL047835.

    • Search Google Scholar
    • Export Citation
  • Rhein, M., and Coauthors, 2013: Observations: Ocean. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 255–315.

  • Roemmich, D., , J. Church, , J. Gilson, , D. Monselesan, , P. Sutton, , and S. Wijffels, 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Climate Change, 5, 240245, doi:10.1038/nclimate2513.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, 141184, doi:10.1002/2013MS000265.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., , N. C. Jourdain, , J. N. Brown, , and D. Monselesan, 2013: Climate drift in the CMIP5 models. J. Climate, 26, 85978615, doi:10.1175/JCLI-D-12-00521.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and Coauthors, 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, doi:10.1007/s00382-011-1259-y.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, doi:10.1175/2010JCLI3679.1.

    • Search Google Scholar
    • Export Citation
  • Watanabe, S., and Coauthors, 2011: MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev., 4, 845872, doi:10.5194/gmd-4-845-2011.

    • Search Google Scholar
    • Export Citation
  • Xin, X.-G., , T.-W. Wu, , and J. Zhang, 2013: Introduction of CMIP5 experiments carried out with the climate system models of Beijing Climate Center. Adv. Climate Change Res., 4, 4149, doi:10.3724/SP.J.1248.2013.041.

    • Search Google Scholar
    • Export Citation
  • Yang, D., , and O. A. Saenko, 2012: Ocean heat transport and its projected change in CanESM2. J. Climate, 25, 81488163, doi:10.1175/JCLI-D-11-00715.1.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2012: A new global climate model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance. J. Meteor. Soc. Japan, 90A, 2364, doi:10.2151/jmsj.2012-A02.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 104 104 18
PDF Downloads 83 83 12

An Energy Conservation Analysis of Ocean Drift in the CMIP5 Global Coupled Models

View More View Less
  • 1 ARC Centre of Excellence for Climate System Science, IMAS, and Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania, Australia
  • 2 Met Office Hadley Centre, Exeter, United Kingdom
  • 3 CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
© Get Permissions
Restricted access

Abstract

Climate model simulations of changes to Earth’s energy budget are fundamental to improve understanding of both historical and future climate change. However, coupled models are prone to “drift” (i.e., they contain spurious unforced trends in state variables) due to incomplete spinup or nonclosure of the energy budget. This work assesses the globally integrated energy budgets of 25 models in phase 5 of CMIP (CMIP5). It is shown that for many of the models there is a significant disagreement between ocean heat content changes and net top-of-atmosphere radiation. The disagreement is largely time-constant and independent of forcing scenario. Furthermore, most of the nonconservation seems to occur as a result of energy leaks external to the ocean model realm. After drift correction, the time-varying energy budget is consistent at decadal time scales, and model responses to climate forcing are not sensitive to the magnitude of their drift. This demonstrates that, although drift terms can be significant, model output can be corrected post hoc without biasing results.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0477.s1.

Corresponding author address: Will Hobbs, ARC Centre of Excellence for Climate System Science, IMAS, Private Bag 129, University of Tasmania, Hobart, Tasmania 7001, Australia. E-mail: whobbs@utas.edu.au

Abstract

Climate model simulations of changes to Earth’s energy budget are fundamental to improve understanding of both historical and future climate change. However, coupled models are prone to “drift” (i.e., they contain spurious unforced trends in state variables) due to incomplete spinup or nonclosure of the energy budget. This work assesses the globally integrated energy budgets of 25 models in phase 5 of CMIP (CMIP5). It is shown that for many of the models there is a significant disagreement between ocean heat content changes and net top-of-atmosphere radiation. The disagreement is largely time-constant and independent of forcing scenario. Furthermore, most of the nonconservation seems to occur as a result of energy leaks external to the ocean model realm. After drift correction, the time-varying energy budget is consistent at decadal time scales, and model responses to climate forcing are not sensitive to the magnitude of their drift. This demonstrates that, although drift terms can be significant, model output can be corrected post hoc without biasing results.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0477.s1.

Corresponding author address: Will Hobbs, ARC Centre of Excellence for Climate System Science, IMAS, Private Bag 129, University of Tasmania, Hobart, Tasmania 7001, Australia. E-mail: whobbs@utas.edu.au

Supplementary Materials

    • Supplemental Materials (DOCX 1.12 MB)
Save