• Andersen, J. A., , and Z. Kuang, 2012: Moisture static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, doi:10.1175/JCLI-D-11-00168.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, T. W., 2003: An Introduction to Multivariate Statistical Analysis. 3rd ed. John Wiley & Sons, 752 pp.

  • Ashok, K., , S. K. Behera, , S. A. Rao, , H. Weng, , and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1966: A Possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18, 820829, doi:10.1111/j.2153-3490.1966.tb00303.x.

    • Search Google Scholar
    • Export Citation
  • Cai, Q., , G. J. Zhang, , and T. Zhou, 2013: Impacts of shallow convection on MJO simulation: A moist static energy and moisture budget analysis. J. Climate, 26, 24172431, doi:10.1175/JCLI-D-12-00127.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., , and C.-Y. Tam, 2010: Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys. Res. Lett., 37, L01803, doi:10.1029/2009GL041708.

    • Search Google Scholar
    • Export Citation
  • Chen, X., , C. Li, , and Y. Tan, 2015: The influences of El Niño on MJO over the equatorial Pacific. J. Ocean Univ. China, 14, 18, doi:10.1007/s11802-015-2381-y.

    • Search Google Scholar
    • Export Citation
  • Chikira, M., 2014: Eastward-propagation intraseasonal oscillation represented by Chikira–Sugiyama cumulus parameterization. Part II: Understanding moisture variation under weak temperature gradient balance. J. Atmos. Sci., 71, 615639, doi:10.1175/JAS-D-13-038.1.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feng, J., , P. Liu, , W. Chen, , and X. C. Wang, 2015: Contrasting Madden–Julian oscillation activity during various stages of EP and CP. Atmos. Sci. Lett., 16, 3237, doi:10.1002/asl2.516.

    • Search Google Scholar
    • Export Citation
  • Gushchina, D., , and B. Dewitte, 2012: Intraseasonal tropical atmospheric variability associated with the two flavors of El Niño. Mon. Wea. Rev., 140, 36693681, doi:10.1175/MWR-D-11-00267.1.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1982: Space-time spectral analysis and its applications to atmospheric waves. J. Meteor. Soc. Japan, 60, 156171.

  • Hendon, H. H., , C. Zhang, , and J. Glick, 1999: Interannual variation of the Madden–Julian oscillation during austral summer. J. Climate, 12, 25382550, doi:10.1175/1520-0442(1999)012<2538:IVOTMJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., , M. Wheeler, , and C. Zhang, 2007: Seasonal dependence of the MJO–ENSO relationship. J. Climate, 20, 531543, doi:10.1175/JCLI4003.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., , and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25, 49144931, doi:10.1175/JCLI-D-11-00310.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., , T. Li, , and H. Murakami, 2014: Moisture asymmetry and MJO eastward propagation in an aqua-planet general circulation model. J. Climate, 27, 87478760, doi:10.1175/JCLI-D-14-00148.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kao, H. Y., , and J. Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of El Niño. J. Climate, 22, 615632, doi:10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kapur, A., , and C. Zhang, 2012: Multiplicative MJO forcing of ENSO. J. Climate, 25, 81328147, doi:10.1175/JCLI-D-11-00609.1.

  • Kapur, A., , C. Zhang, , J. Zavala-Garay, , and H. H. Hendon, 2012: Role of stochastic forcing in ENSO in observations and a coupled GCM. Climate Dyn., 38, 87107, doi:10.1007/s00382-011-1070-9.

    • Search Google Scholar
    • Export Citation
  • Kessler, W., , and R. Kleeman, 2000: Rectification of the Madden–Julian oscillation into the ENSO cycle. J. Climate, 13, 35603575, doi:10.1175/1520-0442(2000)013<3560:ROTMJO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., , P. J. Webster, , and J. A. Curry, 2009: Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325, 7780, doi:10.1126/science.1174062.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., , D. Hoyos, , J. Webster, , and I.-S. Kang, 2010: Ocean–atmosphere coupling and boreal winter MJO. Climate Dyn., 35, 771784, doi:10.1007/s00382-009-0612-x.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., , F.-F. Jin, , and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, doi:10.1175/2008JCLI2624.1.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and P. H. Chan, 1986: The 40–50 day oscillation and the El Niño/Southern Oscillation: A new perspective. Bull. Amer. Meteor. Soc., 67, 533534, doi:10.1175/1520-0477(1986)067<0533:TDOATE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. I: Basic theory. J. Atmos. Sci., 44, 950972, doi:10.1175/1520-0469(1987)044<0950:OOLFOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, C., , and I. Smith, 1995: Numerical simulation of the tropical intraseasonal oscillation and the effect of warm SSTS. Acta Meteor. Sin., 9, 112.

    • Search Google Scholar
    • Export Citation
  • Li, C., , and Q. Liao, 1998: The exciting mechanism of tropical intraseasonal oscillation to El Niño event. J. Trop. Meteor., 14 (4), 113121.

    • Search Google Scholar
    • Export Citation
  • Li, C., , H.-R. Cho, , and J.-T. Wang, 2002: CISK Kelvin wave with evaporation–wind feedback and air–sea interaction—A further study of tropical intraseasonal oscillation mechanism. Adv. Atmos. Sci., 19, 379390, doi:10.1007/s00376-002-0073-1.

    • Search Google Scholar
    • Export Citation
  • Li, C., , Z. Long, , and M. Mu, 2003: Atmospheric intraseasonal oscillation and its important effect (in Chinese). Chin. J. Atmos. Sci., 27, 518535.

    • Search Google Scholar
    • Export Citation
  • Li, C., , X. Jia, , J. Ling, , W. Zhou, , and C. Zhang, 2009: Sensitivity of MJO simulations to diabatic heating profiles. Climate Dyn., 32, 167187, doi:10.1007/s00382-008-0455-x.

    • Search Google Scholar
    • Export Citation
  • Li, C., , J. Ling, , J. Song, , J. Pang, , H. Tian, , and X. Chen, 2014: Research progress in China on the tropical atmospheric intraseasonal oscillation. J. Meteor. Res., 28, 671692, doi:10.1007/s13351-014-4015-5.

    • Search Google Scholar
    • Export Citation
  • Li, T., 2014: Recent advance in understanding the dynamics of the Madden–Julian oscillation. J. Meteor. Res., 28, 133, doi:10.1007/s13351-014-3087-6.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., , and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Lin, A., , and T. Li, 2008: Energy spectrum characteristics of boreal summer intraseasonal oscillations: climatology and variations during the ENSO developing and decaying phases. J. Climate, 21, 63046320, doi:10.1175/2008JCLI2331.1.

    • Search Google Scholar
    • Export Citation
  • Ling, J., , C. D. Zhang, , and P. Bechtold, 2013: Large-scale distinctions between MJO and non-MJO convective initiation over the tropical Indian Ocean. J. Atmos. Sci., 70, 26962712, doi:10.1175/JAS-D-13-029.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , X. Ren, , and X. Yang, 2014: Mean flow–storm track relationship and Rossby wave breaking in two types of El Niño. Adv. Atmos. Sci., 31, 197210, doi:10.1007/s00376-013-2297-7.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with 40–50-day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., , O. Alves, , and H. H. Hendon, 2009: A coupled GCM analysis of MJO activity at the onset of El Niño. J. Atmos. Sci., 66, 966983, doi:10.1175/2008JAS2855.1.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997-98 El Niño. Science, 283, 950954, doi:10.1126/science.283.5404.950.

  • McPhaden, M. J., , X. Zhang, , H. H. Hendon, , and M. C. Wheeler, 2006: Large scale dynamics and MJO forcing ENSO variability. Geophys. Res. Lett., 33, L16702, doi:10.1029/2006GL026786.

    • Search Google Scholar
    • Export Citation
  • Pegion, K., , and B. P. Kirtman, 2008a: The impact of air–sea interactions on the simulation of tropical intraseasonal variability. J. Climate, 21, 66166635, doi:10.1175/2008JCLI2180.1.

    • Search Google Scholar
    • Export Citation
  • Pegion, K., , and B. P. Kirtman, 2008b: The impact of air–sea interactions on the predictability of the tropical intraseasonal oscillation. J. Climate, 21, 58705886, doi:10.1175/2008JCLI2209.1.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., , and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354384, doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ray, P., , and C. Zhang, 2010: A case study of the mechanics of extratropical influence on the initiation of the Madden–Julian oscillation. J. Atmos. Sci., 67, 515528, doi:10.1175/2009JAS3059.1.

    • Search Google Scholar
    • Export Citation
  • Ray, P., , C. Zhang, , J. Dudhia, , and S. S. Chen, 2009: A numerical case study on the initiation of the Madden–Julian Oscillation. J. Atmos. Sci., 66, 310331, doi:10.1175/2008JAS2701.1.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 (D14), 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., , and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, doi:10.1029/2010GL046031.

  • Roundy, P. E., , and J. R. Kravitz, 2009: The association of the evolution of intraseasonal oscillations to ENSO phase. J. Climate, 22, 381395, doi:10.1175/2008JCLI2389.1.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., , D. P. Rowel, , and K. R. Sperber, 1999: On the predictability of the interannual behavior of the Madden–Julian oscillation and its relationship with El Niño. Quart. J. Roy. Meteor. Soc., 125, 583609, doi:10.1002/qj.49712555411.

    • Search Google Scholar
    • Export Citation
  • Tam, C. Y., , and N. C. Lau, 2005: Modulation of the Madden–Julian oscillation by ENSO: Inferences from observations and GCM simulations. J. Meteor. Soc. Japan, 83, 727743, doi:10.2151/jmsj.83.727.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., , and B. Yu, 2008: MJO and its relationship to ENSO. J. Geophys. Res., 113, D14106, doi:10.1029/2007JD009230.

  • Wang, G., , and H. H. Hendon, 2007: Sensitivity of Australian rainfall to inter–El Niño variations. J. Climate, 20, 42114226, doi:10.1175/JCLI4228.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S., , and A. H. Sobel, 2011: Response of convection to relative sea surface temperature: Cloud-resolving simulations in two and three dimensions. J. Geophys. Res., 116, D11119, doi:10.1029/2010JD015347.

    • Search Google Scholar
    • Export Citation
  • Wang, S., , A. H. Sobel, , F. Zhang, , Q. Sun, , Y. Yue, , and L. Zhou, 2015: Regional simulation of the October and November MJO events observed during the CINDY/DYNAMO field campaign at gray zone resolution. J. Climate, 28, 20972119, doi:10.1175/JCLI-D-14-00294.1.

    • Search Google Scholar
    • Export Citation
  • Weng, H., , K. Ashok, , S. K. Behera, , and S. A. Rao, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific Rim during boreal summer. Climate Dyn., 29, 113129, doi:10.1007/s00382-007-0234-0.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuan, Y., , and S. Yang, 2012: Impacts of different types of El Niño on the East Asian Climate: Focus on ENSO cycles. J. Climate, 25, 77027722, doi:10.1175/JCLI-D-11-00576.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, Y., , S. Yang, , and Z. Zhang, 2012: Different evolutions of the Philippine Sea anticyclone between eastern and central Pacific El Niño: Possible effect of Indian Ocean SST. J. Climate, 25, 78677883, doi:10.1175/JCLI-D-12-00004.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, Y., , C. Y. Li, , and J. Ling, 2015: Different MJO activities between EP El Niño and CP El Niño (in Chinese). Sci. Sin. Terr., 45, 318334.

    • Search Google Scholar
    • Export Citation
  • Zavala-Garay, J. Z., , C. D. Zhang, , A. M. Moore, , and R. Kleeman, 2005: The linear response of ENSO to the Madden–Julian oscillation. J. Climate, 18, 24412459, doi:10.1175/JCLI3408.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, 10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, doi:10.1175/BAMS-D-12-00026.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., , and J. Gottschalck, 2002: SST anomalies of ENSO and the Madden–Julian oscillation in the equatorial Pacific. J. Climate, 15, 24292445, doi:10.1175/1520-0442(2002)015<2429:SAOEAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhao, C. B., , T. Li, , and T. J. Zhou, 2013: Precursor signals and processes associated with MJO initiation over the tropical Indian Ocean. J. Climate, 26, 291307, doi:10.1175/JCLI-D-12-00113.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, L.-T., , C.-Y. Tam, , W. Zhou, , and J. C. L. Chan, 2010: Influence of South China Sea SST and the ENSO on winter rainfall over South China. Adv. Atmos. Sci., 27, 832844, doi:10.1007/s00376-009-9102-7.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 69 69 25
PDF Downloads 66 66 30

Evolution of the Madden–Julian Oscillation in Two Types of El Niño

View More View Less
  • 1 College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing, China
  • 2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
  • 3 College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing, and LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

Evolution characteristics of the Madden–Julian oscillation (MJO) during the eastern Pacific (EP) and central Pacific (CP) types of El Niño have been investigated. MJO activities are strengthened over the western Pacific during the predeveloping and developing phases of EP El Niño, but suppressed during the mature and decaying phases. In contrast, MJO activities do not show a clear relationship with CP El Niño before their occurrence over the western Pacific, but they increase over the central Pacific during the mature and decaying phases of CP El Niño. Lag correlation analyses further confirm that MJO activities over the western Pacific in boreal spring and early summer are closely related to EP El Niño up to 2–11 months later, but not for CP El Niño. EP El Niño tends to weaken the MJO and lead to a much shorter range of its eastward propagation. Anomalous descending motions over the Maritime Continent and western Pacific related to El Niño can suppress convection and moisture flux convergence there and weaken MJO activities over these regions during the mature phase of both types of El Niño. MJO activities over the western Pacific are much weaker in EP El Niño due to the stronger anomalous descending motions. Furthermore, the MJO propagates more continuously and farther eastward during CP El Niño because of robust moisture convergence over the central Pacific, which provides adequate moisture for the development of MJO convection.

Corresponding author address: Jian Ling, LASG, Institute of Atmospheric Physics, 40 Huayanli Chaoyao District, Beijing 100029, China. E-mail: lingjian@lasg.iap.ac.cn

Abstract

Evolution characteristics of the Madden–Julian oscillation (MJO) during the eastern Pacific (EP) and central Pacific (CP) types of El Niño have been investigated. MJO activities are strengthened over the western Pacific during the predeveloping and developing phases of EP El Niño, but suppressed during the mature and decaying phases. In contrast, MJO activities do not show a clear relationship with CP El Niño before their occurrence over the western Pacific, but they increase over the central Pacific during the mature and decaying phases of CP El Niño. Lag correlation analyses further confirm that MJO activities over the western Pacific in boreal spring and early summer are closely related to EP El Niño up to 2–11 months later, but not for CP El Niño. EP El Niño tends to weaken the MJO and lead to a much shorter range of its eastward propagation. Anomalous descending motions over the Maritime Continent and western Pacific related to El Niño can suppress convection and moisture flux convergence there and weaken MJO activities over these regions during the mature phase of both types of El Niño. MJO activities over the western Pacific are much weaker in EP El Niño due to the stronger anomalous descending motions. Furthermore, the MJO propagates more continuously and farther eastward during CP El Niño because of robust moisture convergence over the central Pacific, which provides adequate moisture for the development of MJO convection.

Corresponding author address: Jian Ling, LASG, Institute of Atmospheric Physics, 40 Huayanli Chaoyao District, Beijing 100029, China. E-mail: lingjian@lasg.iap.ac.cn
Save