• Adams, D. K., , and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, doi:10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ambrizzi, T., , B. J. Hoskins, , and H.-H. Hsu, 1995: Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci., 52, 36613672, doi:10.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barlow, M., , S. Nigam, , and E. H. Berbery, 1998: Evolution of the North American monsoon system. J. Climate, 11, 22382257, doi:10.1175/1520-0442(1998)011<2238:EOTNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Becker, A., , P. Finger, , A. Meyer-Christoffer, , B. Rudolf, , K. Schamm, , U. Schneider, , and M. Ziese, 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901-present. Earth Syst. Sci. Data, 5, 7199, doi:10.5194/essd-5-71-2013.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., , C. W. Böning, , F. U. Schwarzkopf, , and J. Lutjeharms, 2009: Increase in Agulhas leakage due to poleward shift of Southern Hemisphere westerlies. Nature, 462, 495498, doi:10.1038/nature08519.

    • Search Google Scholar
    • Export Citation
  • Bollasina, M., , and S. Nigam, 2009: Indian Ocean SST, evaporation, and precipitation during the South Asian summer monsoon in IPCC-AR4 coupled simulations. Climate Dyn., 33, 10171032, doi:10.1007/s00382-008-0477-4.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., , K. A. Dahl, , and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, doi:10.1029/2005GL024546.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 1991: The great ocean conveyor. Oceanography, 4, 7989, doi:10.5670/oceanog.1991.07.

  • Broecker, W. S., , D. M. Peteet, , and D. Rind, 1985: Does the ocean–atmosphere system have more than one stable mode of operation? Nature, 315, 2126, doi:10.1038/315021a0.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., , C. Deser, , L. Terray, , J. W. Hurrell, , and M. Drévillon, 2004: Summer sea surface temperature conditions in the North Atlantic and their impact upon the atmospheric circulation in early winter. J. Climate, 17, 33493363, doi:10.1175/1520-0442(2004)017<3349:SSSTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., , L. Terray, , and A. S. Phillips, 2005: Tropical Atlantic influence on European heat waves. J. Climate, 18, 28052811, doi:10.1175/JCLI3506.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, W, ., J. C. H. Chiang, , and D. Zhang, 2013: Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J. Climate, 26, 71877197, doi:10.1175/JCLI-D-12-00496.1.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C., , and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477496, doi:10.1007/s00382-005-0040-5.

    • Search Google Scholar
    • Export Citation
  • Clark, P. U., , N. G. Pisias, , T. F. Stocker, , and A. J. Weaver, 2002: The role of the thermohaline circulation in abrupt climate change. Nature, 415, 863869, doi:10.1038/415863a.

    • Search Google Scholar
    • Export Citation
  • Cook, B., , and R. Seager, 2013: The response of the North American monsoon to increased greenhouse gas forcing. J. Geophys. Res. Atmos., 118, 16901699, doi:10.1002/jgrd.50111.

    • Search Google Scholar
    • Export Citation
  • Corti, S., , A. Weisheimer, , T. Palmer, , F. Doblas‐Reyes, , and L. Magnusson, 2012: Reliability of decadal predictions. Geophys. Res. Lett., 39, L21712, doi:10.1029/2012GL053354.

    • Search Google Scholar
    • Export Citation
  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science, 317, 935938, doi:10.1126/science.1141304.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., , and J. Marshall, 2007: Effects of vertical variations of thickness diffusivity in an ocean general circulation model. Ocean Modell., 18, 122141, doi:10.1016/j.ocemod.2007.03.006.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., , S. C. Bates, , B. P. Briegleb, , S. R. Jayne, , M. Jochum, , W. G. Large, , S. Peacock, , and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, doi:10.1175/JCLI-D-11-00091.1.

    • Search Google Scholar
    • Export Citation
  • de las Heras, M. M., , and R. Schlitzer, 1999: On the importance of intermediate water flows for the global ocean overturning. J. Geophys. Res., 104, 15 51515 536, doi:10.1029/1999JC900102.

    • Search Google Scholar
    • Export Citation
  • Dong, S., , S. Garzoli, , M. Baringer, , C. Meinen, , and G. Goni, 2009: Interannual variations in the Atlantic meridional overturning circulation and its relationship with the net northward heat transport in the South Atlantic. Geophys. Res. Lett., 36, L20606, doi:10.1029/2009GL039356.

    • Search Google Scholar
    • Export Citation
  • Dong, S., , M. Baringer, , G. Goni, , and S. Garzoli, 2011a: Importance of the assimilation of Argo float measurements on the meridional overturning circulation in the South Atlantic. Geophys. Res. Lett., 38, L18603, doi:10.1029/2011GL048982.

    • Search Google Scholar
    • Export Citation
  • Dong, S., , S. L. Garzoli, , and M. O. Baringer, 2011b: The role of interocean exchanges on decadal variations of the meridional heat transport in the South Atlantic. J. Phys. Oceanogr., 41, 14981511, doi:10.1175/2011JPO4549.1.

    • Search Google Scholar
    • Export Citation
  • Dong, S., , M. O. Baringer, , G. J. Goni, , C. S. Meinen, , and S. L. Garzoli, 2014: Seasonal variations in the South Atlantic meridional overturning circulation from observations and numerical models. Geophys. Res. Lett., 41, 46114618, doi:10.1002/2014GL060428.

    • Search Google Scholar
    • Export Citation
  • Dong, S., , G. Goni, , and F. Bringas, 2015: Temporal variability of the South Atlantic meridional overturning circulation between 20°S and 35°S. Geophys. Res. Lett., 42, 76557662, doi:10.1002/2015GL065603.

    • Search Google Scholar
    • Export Citation
  • Drévillon, M., , L. Terray, , P. Rogel, , and C. Cassou, 2001: Midlatitude Atlantic SST influence on European winter climate variability in the NCEP reanalysis. Climate Dyn., 18, 331344, doi:10.1007/s003820100178.

    • Search Google Scholar
    • Export Citation
  • Eden, C., , and J. Willebrand, 2001: Mechanism of interannual to decadal variability of the North Atlantic circulation. J. Climate, 14, 22662280, doi:10.1175/1520-0442(2001)014<2266:MOITDV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., , A. M. Mestas-Nuñez, , and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, doi:10.1029/2000GL012745.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., , J. C. McWilliams, , V. M. Canuto, , and M. Dubovikov, 2008: Parameterization of eddy fluxes near oceanic boundaries. J. Climate, 21, 27702789, doi:10.1175/2007JCLI1510.1.

    • Search Google Scholar
    • Export Citation
  • Findlater, J., 1969: A major low-level air current near the Indian Ocean during the northern summer. Quart. J. Roy. Meteor. Soc., 95, 362380, doi:10.1002/qj.49709540409.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., and Coauthors, 2013: Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci., 6, 940944, doi:10.1038/ngeo1987.

    • Search Google Scholar
    • Export Citation
  • Garzoli, S. L., , and Z. Garraffo, 1989: Transports, frontal motions and eddies at the Brazil-Malvinas Currents Confluence. Deep-Sea Res., 36A, 681703, doi:10.1016/0198-0149(89)90145-3.

    • Search Google Scholar
    • Export Citation
  • Garzoli, S. L., , and R. Matano, 2011: The South Atlantic and the Atlantic meridional overturning circulation. Deep-Sea Res. II, 58, 18371847, doi:10.1016/j.dsr2.2010.10.063.

    • Search Google Scholar
    • Export Citation
  • Goni, G. J., , F. Bringas, , and P. N. Di Nezio, 2011: Observed low frequency variability of the Brazil Current front. J. Geophys. Res., 116, C10037, doi:10.1029/2011JC007198.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1985: Indian-Atlantic transfer of thermocline water at the Agulhas retroflection. Science, 227, 10301033, doi:10.1126/science.227.4690.1030.

    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., , V. Krishnamurthy, , and H. Annmalai, 1999: A broad‐scale circulation index for the interannual variability of the Indian summer monsoon. Quart. J. Roy. Meteor. Soc., 125, 611633, doi:10.1002/qj.49712555412.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and Coauthors, 2011: Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophys. Res. Lett., 38, L10605, doi:10.1029/2011GL047208.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., 2009: Impact of latitudinal variations in vertical diffusivity on climate simulations. J. Geophys. Res., 114, C01010, doi:10.1029/2008JC005030.

    • Search Google Scholar
    • Export Citation
  • Jochum, M., , G. Danabasoglu, , M. Holland, , Y. O. Kwon, , and W. Large, 2008: Ocean viscosity and climate. J. Geophys. Res., 113, C06017, doi:10.1029/2007JC004515.

    • Search Google Scholar
    • Export Citation
  • Johns, W. E., and Coauthors, 2011: Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5°N. J. Climate, 24, 24292449, doi:10.1175/2010JCLI3997.1.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., , D. M. Frierson, , and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, doi:10.1175/2009JAS2924.1.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., , I. M. Held, , and S.-P. Xie, 2014: Contrasting the tropical response to zonally asymmetric extratropical and tropical forcing. Climate Dyn., 42, 20332043, doi:10.1007/s00382-013-1863-0.

    • Search Google Scholar
    • Export Citation
  • Kay, J., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, doi:10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Klinger, B. A., , and J. Marotzke, 2000: Meridional heat transport by the subtropical cell. J. Phys. Oceanogr., 30, 696705, doi:10.1175/1520-0485(2000)030<0696:MHTBTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., , R. J. Allan, , C. K. Folland, , M. Vellinga, , and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.

    • Search Google Scholar
    • Export Citation
  • Knight, J. R., , C. K. Folland, , and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706, doi:10.1029/2006GL026242.

    • Search Google Scholar
    • Export Citation
  • Kriegler, E., , J. W. Hall, , H. Held, , R. Dawson, , and H. J. Schellnhuber, 2009: Imprecise probability assessment of tipping points in the climate system. Proc. Natl. Acad. Sci. USA, 106, 50415046, doi:10.1073/pnas.0809117106.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., , W. A. Robinson, , I. Bladé, , N. M. J. Hall, , S. Peng, , and R. Sutton, 2002: Atmospheric GCM response to extratropical sst anomalies: Synthesis and evaluation. J. Climate, 15, 22332256, doi:10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Latif, M., , K. Arpe, , and E. Roeckner, 2000: Oceanic control of decadal North Atlantic sea level pressure variability in winter. Geophys. Res. Lett., 27, 727730, doi:10.1029/1999GL002370.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and Coauthors, 2004: Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J. Climate, 17, 16051614, doi:10.1175/1520-0442(2004)017<1605:RMAPMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Latif, M., , M. Collins, , H. Pohlmann, , and N. Keenlyside, 2006: A review of predictability studies of Atlantic sector climate on decadal time scales. J. Climate, 19, 59715987, doi:10.1175/JCLI3945.1.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., , B. Wang, , K.-H. Seo, , J.-S. Kug, , Y.-S. Choi, , Y. Kosaka, , and K.-J. Ha, 2014: Future change of Northern Hemisphere summer tropical–extratropical teleconnection in CMIP5 models. J. Climate, 27, 36433664, doi:10.1175/JCLI-D-13-00261.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., , and C. Wang, 2010: Delayed advective oscillation of the Atlantic thermohaline circulation. J. Climate, 23, 12541261, doi:10.1175/2009JCLI3339.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., , W. Park, , E. van Sebille, , M. O. Baringer, , C. Wang, , D. B. Enfield, , S. G. Yeager, , and B. P. Kirtman, 2011: What caused the significant increase in Atlantic Ocean heat content since the mid-20th century? Geophys. Res. Lett., 38, L17607, doi:10.1029/2011GL048856.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., , C. R. Mechoso, , C. Wang, , and J. D. Neelin, 2013: Interhemispheric influence of the northern summer monsoons on the southern subtropical anticyclones. J. Climate, 26, 10 19310 204, doi:10.1175/JCLI-D-13-00106.1.

    • Search Google Scholar
    • Export Citation
  • Lenton, T. M., , R. J. Myerscough, , R. Marsh, , V. N. Livina, , A. R. Price, , and S. J. Cox, 2009: Using GENIE to study a tipping point in the climate system. Philos. Trans. Roy. Soc. London, 367A, 871884, doi:10.1098/rsta.2008.0171.

    • Search Google Scholar
    • Export Citation
  • Li, C., , and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. J. Climate, 9, 358375, doi:10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., , and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, doi:10.1175/JPO3130.1.

  • Manabe, S., , and R. J. Stouffer, 1988: Two stable equilibria of a coupled ocean–atmosphere model. J. Climate, 1, 841866, doi:10.1175/1520-0442(1988)001<0841:TSEOAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., , and D. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415, 603608, doi:10.1038/415603a.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., , and D. Zhang, 2004: Pacific Ocean circulation rebounds. Geophys. Res. Lett., 31, L18301, doi:10.1029/2004GL020727.

  • Medhaug, I., , H. R. Langehaug, , T. Eldevik, , T. Furevik, , and M. Bentsen, 2012: Mechanisms for decadal scale variability in a simulated Atlantic meridional overturning circulation. Climate Dyn., 39, 7793, doi:10.1007/s00382-011-1124-z.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., , J. H. Richter, , and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924, doi:10.1175/2008JCLI2244.1.

    • Search Google Scholar
    • Export Citation
  • Peings, Y., , and G. Magnusdottir, 2014: Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic Ocean. Environ. Res. Lett., 9, 034018, doi:10.1088/1748-9326/9/3/034018.

    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., , and C. K. Folland, 2003: Atlantic air–sea interaction and model validation. Ann. Geophys., 46, 4756, doi:10.4401/ag-3388.

    • Search Google Scholar
    • Export Citation
  • Saunders, P. M., , and B. A. King, 1995: Oceanic fluxes on the WOCE A11 section. J. Phys. Oceanogr., 25, 19421958, doi:10.1175/1520-0485(1995)025<1942:OFOTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sloyan, B. M., , and S. R. Rintoul, 2001: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31, 143173, doi:10.1175/1520-0485(2001)031<0143:TSOLOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., , H. Annamalai, , I.-S. Kang, , A. Kitoh, , A. Moise, , A. Turner, , B. Wang, , and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 27112744, doi:10.1007/s00382-012-1607-6.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13, 224230, doi:10.1111/j.2153-3490.1961.tb00079.x.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 13651387, doi:10.1175/JCLI3689.1.

    • Search Google Scholar
    • Export Citation
  • Sun, C., , J. Li, , F.-F. Jin, , and R. Ding, 2013: Sea surface temperature inter-hemispheric dipole and its relation to tropical precipitation. Environ. Res. Lett., 8, 044006, doi:10.1088/1748-9326/8/4/044006.

    • Search Google Scholar
    • Export Citation
  • Sun, C., , J. Li, , J. Feng, , and F. Xie, 2015a: A decadal-scale teleconnection between the North Atlantic Oscillation and subtropical eastern Australian rainfall. J. Climate, 28, 10741092, doi:10.1175/JCLI-D-14-00372.1.

    • Search Google Scholar
    • Export Citation
  • Sun, C., , J. Li, , and F.-F. Jin, 2015b: A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO. Climate Dyn., 45, 20832099, doi:10.1007/s00382-014-2459-z.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., , and D. L. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118, doi:10.1126/science.1109496.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2003: Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr., 33, 530560, doi:10.1175/1520-0485(2003)033<0530:SIADOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ting, M., , Y. Kushnir, , R. Seager, , and C. Li, 2011: Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys. Res. Lett., 38, L17705, doi:10.1029/2011GL048712.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443, doi:10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tung, K.-K., , and J. Zhou, 2013: Using data to attribute episodes of warming and cooling in instrumental records. Proc. Natl. Acad. Sci. USA, 110, 20582063, doi:10.1073/pnas.1212471110.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629638, doi:10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , J. Liu, , H.-J. Kim, , P. J. Webster, , S.-Y. Yim, , and B. Xiang, 2013: Northern Hemisphere summer monsoon intensified by mega-El Niño/Southern Oscillation and Atlantic multidecadal oscillation. Proc. Natl. Acad. Sci. USA, 110, 53475352, doi:10.1073/pnas.1219405110.

    • Search Google Scholar
    • Export Citation
  • Wang, H., , B. Wang, , F. Huang, , Q. Ding, , and J. Y. Lee, 2012: Interdecadal change of the boreal summer circumglobal teleconnection (1958–2010). Geophys. Res. Lett., 39, L12704, doi:10.1029/2012GL052371.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877926, doi:10.1002/qj.49711850705.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., , V. O. Magana, , T. Palmer, , J. Shukla, , R. Tomas, , M. U. Yanai, , and T. Yasunari, 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14 45114 510, doi:10.1029/97JC02719.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., and Coauthors, 2012: The Southern Ocean and its climate in CCSM4. J. Climate, 25, 26522675, doi:10.1175/JCLI-D-11-00302.1.

    • Search Google Scholar
    • Export Citation
  • Yim, S.-Y., , B. Wang, , J. Liu, , and Z. Wu, 2014: A comparison of regional monsoon variability using monsoon indices. Climate Dyn., 43, 14231437, doi:10.1007/s00382-013-1956-9.

    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., , and A. J. Broccoli, 2008: Equilibrium response of an atmosphere–mixed layer ocean model to different radiative forcing agents: Global and zonal mean response. J. Climate, 21, 43994423, doi:10.1175/2008JCLI2172.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., , and C. Wang, 2013: Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans, 118, 57725791, doi:10.1002/jgrc.20390.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., , and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18, 18531860, doi:10.1175/JCLI3460.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., , and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, doi:10.1029/2006GL026267.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 56 56 10
PDF Downloads 49 49 6

Decadal Modulations of Interhemispheric Global Atmospheric Circulations and Monsoons by the South Atlantic Meridional Overturning Circulation

View More View Less
  • 1 Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
  • 2 NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
© Get Permissions
Restricted access

Abstract

This study presents a physical mechanism on how low-frequency variability of the South Atlantic meridional heat transport (SAMHT) may influence decadal variability of atmospheric circulation. A multicentury simulation of a coupled general circulation model is used as basis for the analysis. The highlight of the findings herein is that multidecadal variability of SAMHT plays a key role in modulating global atmospheric circulation via its influence on interhemispheric redistributions of momentum, heat, and moisture. Weaker SAMHT at 30°S produces anomalous ocean heat divergence over the South Atlantic, resulting in negative ocean heat content anomalies about 15–20 years later. This forces a thermally direct anomalous interhemispheric Hadley circulation, transporting anomalous atmospheric heat from the Northern Hemisphere (NH) to the Southern Hemisphere (SH) and moisture from the SH to the NH, thereby modulating global monsoons. Further analysis shows that anomalous atmospheric eddies transport heat northward in both hemispheres, producing eddy heat flux convergence (divergence) in the NH (SH) around 15°–30°, reinforcing the anomalous Hadley circulation. The effect of eddies on the NH (SH) poleward of 30° depicts heat flux divergence (convergence), which must be balanced by sinking (rising) motion, consistent with a poleward (equatorward) displacement of the jet stream. This study illustrates that decadal variations of SAMHT could modulate the strength of global monsoons with 15–20 years of lead time, suggesting that SAMHT is a potential predictor of global monsoon variability. A similar mechanistic link exists between the North Atlantic meridional heat transport (NAMHT) at 30°N and global monsoons.

Corresponding author address: Hosmay Lopez, UM/CIMAS/RSMAS and NOAA/AOML/PHOD, 4301 Rickenbacker Causeway, Miami, FL 33149. E-mail: hlopez@rsmas.miami.edu

Abstract

This study presents a physical mechanism on how low-frequency variability of the South Atlantic meridional heat transport (SAMHT) may influence decadal variability of atmospheric circulation. A multicentury simulation of a coupled general circulation model is used as basis for the analysis. The highlight of the findings herein is that multidecadal variability of SAMHT plays a key role in modulating global atmospheric circulation via its influence on interhemispheric redistributions of momentum, heat, and moisture. Weaker SAMHT at 30°S produces anomalous ocean heat divergence over the South Atlantic, resulting in negative ocean heat content anomalies about 15–20 years later. This forces a thermally direct anomalous interhemispheric Hadley circulation, transporting anomalous atmospheric heat from the Northern Hemisphere (NH) to the Southern Hemisphere (SH) and moisture from the SH to the NH, thereby modulating global monsoons. Further analysis shows that anomalous atmospheric eddies transport heat northward in both hemispheres, producing eddy heat flux convergence (divergence) in the NH (SH) around 15°–30°, reinforcing the anomalous Hadley circulation. The effect of eddies on the NH (SH) poleward of 30° depicts heat flux divergence (convergence), which must be balanced by sinking (rising) motion, consistent with a poleward (equatorward) displacement of the jet stream. This study illustrates that decadal variations of SAMHT could modulate the strength of global monsoons with 15–20 years of lead time, suggesting that SAMHT is a potential predictor of global monsoon variability. A similar mechanistic link exists between the North Atlantic meridional heat transport (NAMHT) at 30°N and global monsoons.

Corresponding author address: Hosmay Lopez, UM/CIMAS/RSMAS and NOAA/AOML/PHOD, 4301 Rickenbacker Causeway, Miami, FL 33149. E-mail: hlopez@rsmas.miami.edu
Save