The Response of the Southern Ocean and Antarctic Sea Ice to Freshwater from Ice Shelves in an Earth System Model

Andrew G. Pauling Department of Physics, University of Otago, Dunedin, New Zealand

Search for other papers by Andrew G. Pauling in
Current site
Google Scholar
PubMed
Close
,
Cecilia M. Bitz Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Cecilia M. Bitz in
Current site
Google Scholar
PubMed
Close
,
Inga J. Smith Department of Physics, University of Otago, Dunedin, New Zealand

Search for other papers by Inga J. Smith in
Current site
Google Scholar
PubMed
Close
, and
Patricia J. Langhorne Department of Physics, University of Otago, Dunedin, New Zealand

Search for other papers by Patricia J. Langhorne in
Current site
Google Scholar
PubMed
Close
Restricted access

ABSTRACT

The possibility that recent Antarctic sea ice expansion resulted from an increase in freshwater reaching the Southern Ocean is investigated here. The freshwater flux from ice sheet and ice shelf mass imbalance is largely missing in models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5). However, on average, precipitation minus evaporation (PE) reaching the Southern Ocean has increased in CMIP5 models to a present value that is about greater than preindustrial times and 5–22 times larger than estimates of the mass imbalance of Antarctic ice sheets and shelves (119–544 ). Two sets of experiments were conducted from 1980 to 2013 in CESM1(CAM5), one of the CMIP5 models, artificially distributing freshwater either at the ocean surface to mimic iceberg melt or at the ice shelf fronts at depth. An anomalous reduction in vertical advection of heat into the surface mixed layer resulted in sea surface cooling at high southern latitudes and an associated increase in sea ice area. Enhancing the freshwater input by an amount within the range of estimates of the Antarctic mass imbalance did not have any significant effect on either sea ice area magnitude or trend. Freshwater enhancement of raised the total sea ice area by 1 × 106 km2, yet this and even an enhancement of was insufficient to offset the sea ice decline due to anthropogenic forcing for any period of 20 years or longer. Further, the sea ice response was found to be insensitive to the depth of freshwater injection.

Corresponding author address: Andrew Pauling, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand. E-mail: pauan857@student.otago.ac.nz

ABSTRACT

The possibility that recent Antarctic sea ice expansion resulted from an increase in freshwater reaching the Southern Ocean is investigated here. The freshwater flux from ice sheet and ice shelf mass imbalance is largely missing in models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5). However, on average, precipitation minus evaporation (PE) reaching the Southern Ocean has increased in CMIP5 models to a present value that is about greater than preindustrial times and 5–22 times larger than estimates of the mass imbalance of Antarctic ice sheets and shelves (119–544 ). Two sets of experiments were conducted from 1980 to 2013 in CESM1(CAM5), one of the CMIP5 models, artificially distributing freshwater either at the ocean surface to mimic iceberg melt or at the ice shelf fronts at depth. An anomalous reduction in vertical advection of heat into the surface mixed layer resulted in sea surface cooling at high southern latitudes and an associated increase in sea ice area. Enhancing the freshwater input by an amount within the range of estimates of the Antarctic mass imbalance did not have any significant effect on either sea ice area magnitude or trend. Freshwater enhancement of raised the total sea ice area by 1 × 106 km2, yet this and even an enhancement of was insufficient to offset the sea ice decline due to anthropogenic forcing for any period of 20 years or longer. Further, the sea ice response was found to be insensitive to the depth of freshwater injection.

Corresponding author address: Andrew Pauling, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand. E-mail: pauan857@student.otago.ac.nz
Save
  • Aiken, C. M., and M. H. England, 2008: Sensitivity of the present-day climate to freshwater forcing associated with Antarctic sea ice loss. J. Climate, 21, 39363946, doi:10.1175/2007JCLI1901.1.

    • Search Google Scholar
    • Export Citation
  • Barletta, V. R., L. S. Sorensen, and R. Forsberg, 2013: Scatter of mass changes estimates at basin scale for Greenland and Antarctica. Cryosphere, 7, 14111432, doi:10.5194/tc-7-1411-2013.

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., and H. Goosse, 2003: A parametrization of ice shelf–ocean interaction for climate models. Ocean Modell., 5, 157170, doi:10.1016/S1463-5003(02)00019-7.

    • Search Google Scholar
    • Export Citation
  • Bintanja, R., G. J. van Oldenborgh, S. S. Drijfhout, B. Wouters, and C. A. Katsman, 2013: Important role for ocean warming and increased ice-shelf melt in Antarctic sea ice expansion. Nat. Geosci., 6, 376379, doi:10.1038/ngeo1767.

    • Search Google Scholar
    • Export Citation
  • Bintanja, R., G. J. van Oldenborgh, and C. A. Katsman, 2015: The effect of increased fresh water from Antarctic ice shelves on future trends in Antarctic sea ice. Ann. Glaciol., 56, 120126, doi:10.3189/2015AoG69A001.

    • Search Google Scholar
    • Export Citation
  • Depoorter, M. A., J. L. Bamber, J. A. Griggs, J. T. M. Lenaerts, S. R. M. Ligtenburg, M. R. van den Broeke, and G. Moholdt, 2013: Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502, 8992, doi:10.1038/nature12567.

    • Search Google Scholar
    • Export Citation
  • Ding, Q. H., E. J. Steig, D. S. Battisti, and M. Kuttel, 2011: Winter warming in West Antarctica caused by central tropical Pacific warming. Nat. Geosci., 4, 398403, doi:10.1038/ngeo1129.

    • Search Google Scholar
    • Export Citation
  • Eisenman, I., W. N. Meier, and J. R. Norris, 2014: A spurious jump in the satellite record: Has Antarctic sea ice expansion been overestimated? Cryosphere, 8, 12891296, doi:10.5194/tc-8-1289-2014.

    • Search Google Scholar
    • Export Citation
  • Fan, T., C. Deser, and D. P. Schneider, 2014: Recent Antarctic sea ice trends in the context of Southern Ocean surface climate variations since 1950. Geophys. Res. Lett., 41, 24192426, doi:10.1002/2014GL059239.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, C. M. Bitz, S. Solomon, and A. Plumb, 2015: Antarctic ocean and sea ice response to ozone depletion: A two-time-scale problem. J. Climate, 28, 12061226, doi:10.1175/JCLI-D-14-00313.1.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 126 pp. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter09_FINAL.pdf.]

  • Gille, S. T., 2008: Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Climate, 21, 47494765, doi:10.1175/2008JCLI2131.1.

    • Search Google Scholar
    • Export Citation
  • Goosse, H., and V. Zunz, 2014: Decadal trends in the Antarctic sea ice extent ultimately controlled by ice–ocean feedback. Cryosphere, 8, 453470, doi:10.5194/tc-8-453-2014.

    • Search Google Scholar
    • Export Citation
  • Hellmer, H. H., 2004: Impact of Antarctic ice shelf basal melting on sea ice and deep ocean properties. Geophys. Res. Lett., 31, L10307, doi:10.1029/2004gl019506.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., E. Blanchard-Wrigglesworth, J. Kay, and S. Vavrus, 2013: Initial-value predictability of Antarctic sea ice in the Community Climate System Model 3. Geophys. Res. Lett., 40, 21212124, doi:10.1002/grl.50410.

    • Search Google Scholar
    • Export Citation
  • Holland, P. R., and R. Kwok, 2012: Wind-driven trends in Antarctic sea ice drift. Nat. Geosci., 5, 872875, doi:10.1038/ngeo1627.

  • Holland, P. R., N. Bruneau, C. Enright, M. Losch, N. T. Kurtz, and R. Kwok, 2014: Modeled trends in Antarctic sea ice thickness. J. Climate, 27, 37843801, doi:10.1175/JCLI-D-13-00301.1.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., A. Jenkins, C. F. Giulivi, and P. Dutrieux, 2011: Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf. Nat. Geosci., 4, 519523, doi:10.1038/ngeo1188.

    • Search Google Scholar
    • Export Citation
  • Jongma, J. I., E. Driesschaert, T. Fichefet, H. Goosse, and H. Renssen, 2009: The effect of dynamic–thermodynamic icebergs on the Southern Ocean in a three-dimensional model. Ocean Modell., 26, 104113, doi:10.1016/j.ocemod.2008.09.007.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Met. Soc., 96, 13331349, doi:10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • King, M. A., R. J. Bingham, P. Moore, P. L. Whitehouse, M. J. Bentley, and G. A. Milne, 2012: Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature, 491, 586589, doi:10.1038/nature11621.

    • Search Google Scholar
    • Export Citation
  • Li, X. C., D. M. Holland, E. P. Gerber, and C. Yoo, 2014: Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature, 505, 538542, doi:10.1038/nature12945.

    • Search Google Scholar
    • Export Citation
  • Liston, G. E., and J.-G. Winther, 2005: Antarctic surface and subsurface snow and ice melt fluxes. J. Climate, 18, 14691481, doi:10.1175/JCLI3344.1.

    • Search Google Scholar
    • Export Citation
  • Maksym, T., S. E. Stammerjohn, S. Ackley, and R. Massom, 2012: Antarctic sea ice—A polar opposite? Oceanography, 25, 140151, doi:10.5670/oceanog.2012.88.

    • Search Google Scholar
    • Export Citation
  • Martin, T., and A. Adcroft, 2010: Parameterizing the fresh-water flux from land ice to ocean with interactive icebergs in a coupled climate model. Ocean Modell., 34, 111124, doi:10.1016/j.ocemod.2010.05.001.

    • Search Google Scholar
    • Export Citation
  • McMillan, M., A. Shepherd, A. Sundal, K. Briggs, A. Muir, A. Ridout, A. Hogg, and D. Wingham, 2014: Increased ice losses from Antarctica detected by CryoSat-2. Geophys. Res. Lett., 41, 38993905, doi:10.1002/2014GL060111.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2013: Technical description of version 4.5 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+STR, 233 pp., doi:10.5065/D6RR1W7M.

  • Paolo, F. S., H. A. Fricker, and L. Padman, 2015: Volume loss from Antarctic ice shelves is accelerating. Science, 348, 327331, doi:10.1126/science.aaa0940.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and K. L. Smith, 2013: Can natural variability explain observed Antarctic sea ice trends? New modelling evidence from CMIP5. Geophys. Res. Lett., 40, 31953199, doi:10.1002/grl.50578.

    • Search Google Scholar
    • Export Citation
  • Renwick, J. A., A. Kohout, and S. Dean, 2012: Atmospheric forcing of Antarctic sea ice on intraseasonal time scales. J. Climate, 25, 59625975, doi:10.1175/JCLI-D-11-00423.1.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., I. Velicogna, M. R. van den Broeke, A. Monaghan, and J. Lenaerts, 2011: Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38, L05503, doi:10.1029/2011GL047109.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., S. Jacobs, J. Mouginot, and B. Scheuchl, 2013: Ice-shelf melting around Antarctica. Science, 341, 266270, doi:10.1126/science.1235798.

    • Search Google Scholar
    • Export Citation
  • Rye, C. D., A. C. N. Garabato, P. R. Holland, M. P. Meredith, A. J. G. Nurser, C. W. Hughes, A. C. Coward, and D. J. Webb, 2014: Rapid sea-level rise along the Antarctic margins in response to increased glacial discharge. Nat. Geosci., 7, 732735, doi:10.1038/ngeo2230.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Artic temperature amplification. Nature, 464, 13341337, doi:10.1038/nature09051.

    • Search Google Scholar
    • Export Citation
  • Shepherd, A., D. Wingham, D. Wallis, K. Giles, S. Laxon, and A. V. Sundal, 2010: Recent loss of floating ice and the consequent sea level contribution. Geophys. Res. Lett., 37, L13503, doi:10.1029/2010GL042496.

    • Search Google Scholar
    • Export Citation
  • Shepherd, A., and Coauthors, 2012: A reconciled estimate of ice-sheet mass balance. Science, 338, 11831189, doi:10.1126/science.1228102.

    • Search Google Scholar
    • Export Citation
  • Stammerjohn, S. E., D. G. Martinson, R. C. Smith, X. Yuan, and D. Rind, 2008: Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res. Oceans, 113, C03S90, doi:10.1029/2007JC004269.

    • Search Google Scholar
    • Export Citation
  • Sutterley, T. C., I. Velicogna, E. Rignot, J. Mouginot, T. Flament, M. R. van den Broeke, J. M. van Wessem, and C. H. Reijmer, 2014: Mass loss of the Amundsen Sea Embayment of West Antarctica from four independent techniques. Geophys. Res. Lett., 41, 84218428, doi:10.1002/2014GL061940.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and J. C. Fyfe, 2013: The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends. Geophys. Res. Lett., 40, 43284332, doi:10.1002/grl.50820.

    • Search Google Scholar
    • Export Citation
  • Swingedouw, D., T. Fichefet, P. Huybrechts, H. Goosse, E. Driesschaert, and M.-F. Loutre, 2008: Antarctic ice-sheet melting provides negative feedbacks on future climate warming. Geophys. Res. Lett., 35, L17705, doi:10.1029/2008GL034410.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Timmermann, R., and Coauthors, 2010: A consistent dataset of Antarctic ice sheet topography, cavity geometry, and global bathymetry. Earth Syst. Sci. Data, 2, 261273, doi:10.5194/essd-2-261-2010.

    • Search Google Scholar
    • Export Citation
  • Turner, J., and Coauthors, 2009: Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys. Res. Lett., 36, L08502, doi:10.1029/2009GL037524.

    • Search Google Scholar
    • Export Citation
  • Turner, J., J. S. Hosking, T. Phillips, and G. J. Marhsall, 2013: Temporal and spatial evolution of the Antarctic sea ice prior to the September 2012 record maximum extent. Geophys. Res. Lett., 40, 58945898, doi:10.1002/2013GL058371.

    • Search Google Scholar
    • Export Citation
  • Vaughan, D. G., and Coauthors, 2013: Observations: Cryosphere. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 66 pp. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter04_FINAL.pdf.]

  • Velicogna, I., and J. Wahr, 2013: Time-variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite data. Geophys. Res. Lett., 40, 30553063, doi:10.1002/grl.50527.

    • Search Google Scholar
    • Export Citation
  • Williams, S. D. P., P. Moore, M. A. King, and P. L. Whitehouse, 2014: Revisiting GRACE Antarctic ice mass trends and accelerations considering autocorrelation. Earth Planet. Sci. Lett., 385, 1221, doi:10.1016/j.epsl.2013.10.016.

    • Search Google Scholar
    • Export Citation
  • Zunz, V., and H. Goosse, 2015: Influence of freshwater input on the skill of decadal forecast of sea ice in the Southern Ocean. Cryosphere, 9, 541556, doi:10.5194/tc-9-541-2015.

    • Search Google Scholar
    • Export Citation
  • Zunz, V., H. Goosse, and F. Massonet, 2013: How does internal variability influence the ability of CMIP5 models to reproduce the recent trend in Southern Ocean sea ice extent. Cryosphere, 7, 451468, doi:10.5194/tc-7-451-2013.

    • Search Google Scholar
    • Export Citation
  • Zwally, H. J., M. B. Giovinetto, J. Li, H. G. Cornejo, M. A. Beckley, A. C. Brenner, J. L. Saba, and D. H. Yi, 2005: Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J. Glaciol., 51, 509527, doi:10.3189/172756505781829007.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1472 455 83
PDF Downloads 1055 303 36