Characterization of the Variability of the South Pacific Convergence Zone Using Satellite and Reanalysis Wind Products

Autumn Kidwell College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware

Search for other papers by Autumn Kidwell in
Current site
Google Scholar
PubMed
Close
,
Tong Lee Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Tong Lee in
Current site
Google Scholar
PubMed
Close
,
Young-Heon Jo Department of Oceanography, Pusan National University, Busan, South Korea

Search for other papers by Young-Heon Jo in
Current site
Google Scholar
PubMed
Close
, and
Xiao-Hai Yan College of Earth, Ocean, and Environment, University of Delaware, and University of Delaware/Xiamen University, Joint Institute of Coastal Research and Management, Newark, Delaware

Search for other papers by Xiao-Hai Yan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The variability of the South Pacific convergence zone (SPCZ) is evaluated using ocean surface wind products derived from the atmospheric reanalysis ERA-Interim for the period of 1981–2014 and QuickSCAT for the period of 1999–2009. From these products, indices were developed to represent the SPCZ strength, area, and centroid location. Excellent agreement is found between the indices derived from the two wind products during the QuikSCAT period in terms of the spatiotemporal structures of the SPCZ. The longer ERA-Interim product is used to study the variations of SPCZ properties on intraseasonal, seasonal, interannual, and decadal time scales. The SPCZ strength, area, and centroid latitude have a dominant seasonal cycle. In contrast, the SPCZ centroid longitude is dominated by intraseasonal variability due to MJO influence. The SPCZ indices are all correlated with El Niño–Southern Oscillation indices. Interannual and intraseasonal variations of SPCZ strength during strong El Niño are approximately twice as large as the respective seasonal variations. SPCZ strength depends more on the intensity of El Niño rather than the central-Pacific versus eastern-Pacific type. The change from positive to negative Pacific decadal oscillation (PDO) around 1999 results in a westward shift of the SPCZ centroid longitude, a much smaller interannual swing in centroid latitude, and a decrease in SPCZ area. This study improves the understanding of the variations of the SPCZ on multiple time scales and reveals the variations of SPCZ strength not reported previously. The diagnostics analyses can be used to evaluate climate models to gauge their fidelity.

Corresponding author address: Autumn Kidwell, College of Earth, Ocean, and Environment, 215 Robinson Hall, University of Delaware, Newark, DE 19716. E-mail: akidwell@udel.edu; xiaohai@udel.edu

Abstract

The variability of the South Pacific convergence zone (SPCZ) is evaluated using ocean surface wind products derived from the atmospheric reanalysis ERA-Interim for the period of 1981–2014 and QuickSCAT for the period of 1999–2009. From these products, indices were developed to represent the SPCZ strength, area, and centroid location. Excellent agreement is found between the indices derived from the two wind products during the QuikSCAT period in terms of the spatiotemporal structures of the SPCZ. The longer ERA-Interim product is used to study the variations of SPCZ properties on intraseasonal, seasonal, interannual, and decadal time scales. The SPCZ strength, area, and centroid latitude have a dominant seasonal cycle. In contrast, the SPCZ centroid longitude is dominated by intraseasonal variability due to MJO influence. The SPCZ indices are all correlated with El Niño–Southern Oscillation indices. Interannual and intraseasonal variations of SPCZ strength during strong El Niño are approximately twice as large as the respective seasonal variations. SPCZ strength depends more on the intensity of El Niño rather than the central-Pacific versus eastern-Pacific type. The change from positive to negative Pacific decadal oscillation (PDO) around 1999 results in a westward shift of the SPCZ centroid longitude, a much smaller interannual swing in centroid latitude, and a decrease in SPCZ area. This study improves the understanding of the variations of the SPCZ on multiple time scales and reveals the variations of SPCZ strength not reported previously. The diagnostics analyses can be used to evaluate climate models to gauge their fidelity.

Corresponding author address: Autumn Kidwell, College of Earth, Ocean, and Environment, 215 Robinson Hall, University of Delaware, Newark, DE 19716. E-mail: akidwell@udel.edu; xiaohai@udel.edu
Save
  • Ashok, K., and T. Yamagata, 2009: Climate change: The El Niño with a difference. Nature, 461, 481484, doi:10.1038/461481a.

  • Borlace, S., A. Santoso, W. Cai, and M. Collins, 2014: Extreme swings of the South Pacific convergence zone and the different types of El Niño events. Geophys. Res. Lett., 41, 46954703, doi:10.1002/2014GL060551.

    • Search Google Scholar
    • Export Citation
  • Brown, J. N., and Coauthors, 2013: Implications of CMIP3 model biases and uncertainties for climate projections in the western tropical Pacific. Climatic Change, 119, 147161, doi:10.1007/s10584-012-0603-5.

    • Search Google Scholar
    • Export Citation
  • Brown, J. R., S. B. Power, F. P. Delage, R. A. Colman, A. F. Moise, and B. F. Murphy, 2011: Evaluation of the South Pacific convergence zone in IPCC AR4 climate model simulations of the twentieth century. J. Climate, 24, 15651582, doi:10.1175/2010JCLI3942.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2012: More extreme swings of the South Pacific convergence zone due to greenhouse warming. Nature, 488, 365369, doi:10.1038/nature11358.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, doi:10.1038/nclimate2100.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., 2008: Can the mean structure of the tropical pycnocline affect ENSO period in coupled climate models? Ocean Modell., 20, 157169, doi:10.1016/j.ocemod.2007.08.003.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., 2013: ENSO diversity in the NCAR CCSM4 climate model. J. Geophys. Res. Oceans, 118, 47554770, doi:10.1002/jgrc.20335.

  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, doi:10.1175/BAMS-D-13-00117.1.

    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., and D. E. Harrison, 2015: Global seasonal precipitation anomalies robustly associated with El Niño and La Niña events—An OLR perspective. J. Climate, 28, 61336159, doi:10.1175/JCLI-D-14-00387.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Delcroix, T., and C. Hénin, 1991: Seasonal and interannual variations of sea surface salinity in the tropical Pacific Ocean. J. Geophys. Res., 96, 22 13522 150, doi:10.1029/91JC02124.

    • Search Google Scholar
    • Export Citation
  • ECMWF, 2006: ERA-Interim global atmospheric reanalysis 1979–present. [Available online at http://www.ecmwf.int/en/research/climate-reanalysis/browse-reanalysis-datasets.]

  • Folland, C. K., J. A. Renwick, M. J. Salinger, and A. B. Mullan, 2002: Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys. Res. Lett., 29, 21-121-4, doi:10.1029/2001GL014201.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and Coauthors, 2007: Southwest Pacific Ocean Circulation and Climate Experiment. Part I: Scientific background. CLIVAR Publ. 111, 44 pp. [Available online at http://www.clivar.org/sites/default/files/documents/pacific/111_SPICEscienceplan.pdf.]

  • Ganachaud, A., and Coauthors, 2014: The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE). J. Geophys. Res. Oceans, 119, 76607686, doi:10.1002/2013JC009678.

    • Search Google Scholar
    • Export Citation
  • Glynn, P. W., N. J. Gassman, C. M. Eakin, J. Cortes, D. B. Smith, and H. M. Guzman, 1991: Reef coral reproduction in the eastern Pacific: Costa Rica, Panama, and Galapagos Islands (Ecuador). Mar. Biol., 109, 355368, doi:10.1007/BF01313501.

    • Search Google Scholar
    • Export Citation
  • Haffke, C., and G. Magnusdottir, 2013: The South Pacific convergence zone in three decades of satellite images. J. Geophys. Res., 118, 10 83910 849, doi:10.1002/jgrd.50838.

    • Search Google Scholar
    • Export Citation
  • Hasson, A., T. Delcroix, and J. Boutin, 2013: Formation and variability of the South Pacific Sea Surface Salinity maximum in recent decades. J. Geophys. Res. Oceans, 118, 51095116, doi:10.1002/jgrc.20367.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

  • Jianglong, L., Z. Xuehong, Y. Yongqiang, and D. Fushan, 2004: Primary reasoning behind the double ITCZ phenomenon in a coupled ocean–atmosphere general circulation model. Adv. Atmos. Sci., 21, 857867, doi:10.1007/BF02915588.

    • Search Google Scholar
    • Export Citation
  • Juillet-Leclerc, A., S. Thiria, P. Naveau, T. Delcroix, N. Le Bec, D. Blamart, and T. Corrège, 2006: SPCZ migration and ENSO events during the 20th century as revealed by climate proxies from a Fiji coral. Geophys. Res. Lett., 33, L17710, doi:10.1029/2006GL025950.

    • Search Google Scholar
    • Export Citation
  • Kao, H., and J. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, doi:10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kidwell, A., Y.-H. Jo, and X.-H. Yan, 2014: A closer look at the central Pacific El Niño and warm pool migration events from 1982 to 2011. J. Geophys. Res. Oceans, 119, 165172, doi:10.1002/2013JC009083.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., J. Choi, S.-I. An, F.-F. Jin, and A. T. Wittenberg, 2010: Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J. Climate, 23, 12261239, doi:10.1175/2009JCLI3293.1.

    • Search Google Scholar
    • Export Citation
  • Lee, T., and I. Fukumori, 2003: Interannual-to-decadal variations of tropical–subtropical exchange in the Pacific Ocean: Boundary versus interior pycnocline transports. J. Climate, 16, 40224042, doi:10.1175/1520-0442(2003)016<4022:IVOTEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., and X. Xie, 2002: Double intertropical convergence zones—A new look using scatterometer. Geophys. Res. Lett., 29, 2072, doi:10.1029/2002GL015431.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2000: Propagation mechanisms for the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 126, 26372652, doi:10.1002/qj.49712656902.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2012: A multiscale framework for the origin and variability of the South Pacific convergence zone. Quart. J. Roy. Meteor. Soc., 138, 11651178, doi:10.1002/qj.1870.

    • Search Google Scholar
    • Export Citation
  • Murphy, B. F., S. B. Power, and S. McGree, 2014: The varied impacts of El Niño–Southern Oscillation on Pacific island climates. J. Climate, 27, 40154036, doi:10.1175/JCLI-D-13-00130.1.

    • Search Google Scholar
    • Export Citation
  • NASA/PODAAC, 2012: SeaWinds on QuikSCAT Level 3 surface wind speed for climate model comparison. [Available online at http://podaac.jpl.nasa.gov/dataset/QSCAT_L3_SFC_WIND_SPEED_1DEG_1MO.]

  • Niznik, M. J., and B. R. Lintner, 2013: Circulation, moisture, and precipitation relationships along the South Pacific convergence zone in reanalyses and CMIP5 models. J. Climate, 26, 10 17410 192, doi:10.1175/JCLI-D-13-00263.1.

    • Search Google Scholar
    • Export Citation
  • Qu, T., J. Gan, A. Ishida, Y. Kashino, and T. Tozuka, 2008: Semiannual variation in the western tropical Pacific Ocean. Geophys. Res. Lett., 35, L16602, doi:10.1029/2008GL035058.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., and B. Dewitte, 2015: Strong and moderate nonlinear El Niño regimes. Climate Dyn., doi:10.1007/s00382-015-2665-3.

  • Van der Wiel, K., A. J. Matthews, M. M. Joshi, and D. P. Stevens, 2015: Why the South Pacific convergence zone is diagonal. Climate Dyn., doi:10.1007/s00382-015-2668-0.

    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., M. Lengaigne, C. E. Menkes, N. C. Jourdain, P. Marchesiello, and G. Madec, 2011: Interannual variability of the South Pacific convergence zone and implications for tropical cyclone genesis. Climate Dyn., 36, 18811896, doi:10.1007/s00382-009-0716-3.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Widlansky, M. J., P. J. Webster, and C. D. Hoyos, 2011: On the location and orientation of the South Pacific convergence zone. Climate Dyn., 36, 561578, doi:10.1007/s00382-010-0871-6.

    • Search Google Scholar
    • Export Citation
  • Widlansky, M. J., A. Timmermann, K. Stein, S. McGregor, N. Schneider, M. H. England, M. Lengaigne, and W. Cai, 2013: Changes in South Pacific rainfall bands in a warming climate. Nat. Climate Change, 3, 417423, doi:10.1038/nclimate1726.

    • Search Google Scholar
    • Export Citation
  • Widlansky, M. J., A. Timmermann, S. McGregor, M. F. Stuecker, and W. Cai, 2014: An interhemispheric tropical sea level seesaw due to El Niño taimasa. J. Climate, 27, 10701081, doi:10.1175/JCLI-D-13-00276.1.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., H.-Y. Kao, T. Lee, and S. T. Kim, 2011: Subsurface ocean temperature indices for central-Pacific and eastern-Pacific types of El Niño and La Niña events. Theor. Appl. Climatol., 103, 337344, doi:10.1007/s00704-010-0307-6.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., Y. Zou, S. T. Kim, and T. Lee, 2012: The changing impact of El Niño on US winter temperatures. Geophys. Res. Lett., 39, L15702, doi:10.1029/2012GL052483.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zheng, Q., X.-H. Yan, W. T. Liu, W. Tang, and D. Kurz, 1997: Seasonal and interannual variability of atmospheric convergence zones in the tropical Pacific observed with ERS-1 scatterometer. Geophys. Res. Lett., 24, 261263, doi:10.1029/97GL00033.

    • Search Google Scholar
    • Export Citation
  • Zou, Y., J.-Y. Yu, T. Lee, M.-M. Lu, and S. T. Kim, 2014: CMIP5 model simulations of the impacts of the two types of El Niño on the U.S. winter temperature. J. Geophys. Res., 119, 30763092, doi:10.1002/2013JD021064.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 323 100 9
PDF Downloads 219 40 11