Quantification of Warming Climate-Induced Changes in Terrestrial Arctic River Ice Thickness and Phenology

Hotaek Park * Institute of Arctic Climate and Environment Research, JAMSTEC, Yokosuka, Japan

Search for other papers by Hotaek Park in
Current site
Google Scholar
PubMed
Close
,
Yasuhiro Yoshikawa Department of Civil and Environmental Engineering, Kitami Institute of Technology, Kitami, Hokkaido, Japan

Search for other papers by Yasuhiro Yoshikawa in
Current site
Google Scholar
PubMed
Close
,
Kazuhiro Oshima * Institute of Arctic Climate and Environment Research, JAMSTEC, Yokosuka, Japan

Search for other papers by Kazuhiro Oshima in
Current site
Google Scholar
PubMed
Close
,
Youngwook Kim Numerical Terradynamic Simulation Group, College of Forestry and Conservation, University of Montana, Missoula, Montana

Search for other papers by Youngwook Kim in
Current site
Google Scholar
PubMed
Close
,
Thanh Ngo-Duc Department of Meteorology and Climate Change, Hanoi College of Science, Vietnam National University, Hanoi, Vietnam

Search for other papers by Thanh Ngo-Duc in
Current site
Google Scholar
PubMed
Close
,
John S. Kimball Numerical Terradynamic Simulation Group, College of Forestry and Conservation, University of Montana, Missoula, Montana

Search for other papers by John S. Kimball in
Current site
Google Scholar
PubMed
Close
, and
Daqing Yang National Hydrology Research Centre, Environment Canada, Saskatoon, Saskatchewan, Canada

Search for other papers by Daqing Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A land process model [the coupled hydrological and biogeochemical model (CHANGE)] is used to quantitatively assess changes in the ice phenology, thickness, and volume of terrestrial Arctic rivers from 1979 to 2009. The CHANGE model was coupled with a river routing and discharge model enabling explicit representation of river ice and water temperature dynamics. Model-simulated river ice phenological dates and thickness were generally consistent with in situ river ice data and landscape freeze–thaw (FT) satellite observations. Climate data indicated an increasing trend in winter surface air temperature (SAT) over the pan-Arctic during the study period. Nevertheless, the river ice thickness simulations exhibited a thickening regional trend independent of SAT warming, and associated with less insulation and cooling of underlying river ice by thinning snow cover. Deeper snow depth (SND) combined with SAT warming decreased simulated ice thickness, especially for Siberian rivers, where ice thickness is more strongly correlated with SND than SAT. Overall, the Arctic river ice simulations indicated regional trends toward later fall freezeup, earlier spring breakup, and consequently a longer annual ice-free period. The simulated ice phenological dates were significantly correlated with seasonal SAT warming. It is found that SND is an important factor for winter river ice growth, while ice phenological timing is dominated by seasonal SAT. The mean total Arctic river ice volume simulated from CHANGE was 54.1 km3 based on the annual maximum ice thickness in individual grid cells, while river ice volume for the pan-Arctic rivers decreased by 2.82 km3 (0.5%) over the 1979–2009 record. Arctic river ice is shrinking as a consequence of regional climate warming and coincident with other cryospheric components, including permafrost, glaciers, and sea ice.

Corresponding author address: Hotaek Park, Institute of Arctic Climate and Environment Research, JAMSTEC, 2-15 Natsushimacho, Yokosuka 237-0061, Japan. E-mail: park@jamstec.go.jp

Abstract

A land process model [the coupled hydrological and biogeochemical model (CHANGE)] is used to quantitatively assess changes in the ice phenology, thickness, and volume of terrestrial Arctic rivers from 1979 to 2009. The CHANGE model was coupled with a river routing and discharge model enabling explicit representation of river ice and water temperature dynamics. Model-simulated river ice phenological dates and thickness were generally consistent with in situ river ice data and landscape freeze–thaw (FT) satellite observations. Climate data indicated an increasing trend in winter surface air temperature (SAT) over the pan-Arctic during the study period. Nevertheless, the river ice thickness simulations exhibited a thickening regional trend independent of SAT warming, and associated with less insulation and cooling of underlying river ice by thinning snow cover. Deeper snow depth (SND) combined with SAT warming decreased simulated ice thickness, especially for Siberian rivers, where ice thickness is more strongly correlated with SND than SAT. Overall, the Arctic river ice simulations indicated regional trends toward later fall freezeup, earlier spring breakup, and consequently a longer annual ice-free period. The simulated ice phenological dates were significantly correlated with seasonal SAT warming. It is found that SND is an important factor for winter river ice growth, while ice phenological timing is dominated by seasonal SAT. The mean total Arctic river ice volume simulated from CHANGE was 54.1 km3 based on the annual maximum ice thickness in individual grid cells, while river ice volume for the pan-Arctic rivers decreased by 2.82 km3 (0.5%) over the 1979–2009 record. Arctic river ice is shrinking as a consequence of regional climate warming and coincident with other cryospheric components, including permafrost, glaciers, and sea ice.

Corresponding author address: Hotaek Park, Institute of Arctic Climate and Environment Research, JAMSTEC, 2-15 Natsushimacho, Yokosuka 237-0061, Japan. E-mail: park@jamstec.go.jp
Save
  • Adam, J. C., and D. P. Lettenmaier, 2003: Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res., 108, 4257, doi:10.1029/2002JD002499.

    • Search Google Scholar
    • Export Citation
  • Adam, J. C., E. A. Clark, D. P. Lettenmaier, and E. F. Wood, 2006: Correction of global precipitation for orographic effects. J. Climate, 19, 1538, doi:10.1175/JCLI3604.1.

    • Search Google Scholar
    • Export Citation
  • Adams, W. P., and T. D. Prowse, 1981: Evolution and magnitude of spatial patterns in the winter cover of temperate lakes. Fennia, 159, 343359.

    • Search Google Scholar
    • Export Citation
  • AMAP, 2011: Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate change and the cryosphere. Arctic Monitoring and Assessment Programme Rep., 538 pp. [Available online at http://www.amap.no/documents/doc/snow-water-ice-and-permafrost-in-the-arctic-swipa-climate-change-and-the-cryosphere/743.]

  • Andrishak, R., and F. Hicks, 2008: Simulating the effects of climate change on the ice regime of the Peace River. Can. J. Civ. Eng., 35, 461472, doi:10.1139/L07-129.

    • Search Google Scholar
    • Export Citation
  • Arora, V. K., and G. J. Boer, 1999: A variable velocity flow routing algorithm for GCMs. J. Geophys. Res., 104, 30 96530 979, doi:10.1029/1999JD900905.

    • Search Google Scholar
    • Export Citation
  • Bamber, J. L., and R. L. Layberry, 2001: A new ice thickness and bed data set for the Greenland ice sheet: 1. Measurement, data reduction, and errors. J. Geophys. Res., 106, 33 77333 780, doi:10.1029/2001JD900054.

    • Search Google Scholar
    • Export Citation
  • Bekryaev, R. V., I. V. Polyakov, and V. A. Alexeev, 2010: Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J. Climate, 23, 38883906, doi:10.1175/2010JCLI3297.1.

    • Search Google Scholar
    • Export Citation
  • Beltaos, S., 1997: Onset of river ice breakup. Cold Reg. Sci. Technol., 25, 183196, doi:10.1016/S0165-232X(96)00011-0.

  • Beltaos, S., and T. Prowse, 2009: River-ice hydrology in a shrinking cryosphere. Hydrol. Processes, 23, 122144, doi:10.1002/hyp.7165.

    • Search Google Scholar
    • Export Citation
  • Benson, B., and J. Magnuson, 2012: Global lake and river ice phenology database. National Snow and Ice Data Center, accessed 15 May 2015, doi:10.7265/N5W66HP8.

  • Bieniek, P. A., U. S. Bhatt, L. A. Rundquist, S. D. Lindsey, X. Zhang, and R. L. Thoman, 2011: Large-scale climate controls of interior Alaska river ice breakup. J. Climate, 24, 286297, doi:10.1175/2010JCLI3809.1.

    • Search Google Scholar
    • Export Citation
  • Brooks, R. N., T. D. Prowse, and I. J. O’Connell, 2013: Quantifying Northern Hemisphere freshwater ice. Geophys. Res. Lett., 40, 11281131, doi:10.1002/grl.50238.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., and P. W. Mote, 2009: The response of Northern Hemisphere snow cover to a changing climate. J. Climate, 22, 21242145, doi:10.1175/2008JCLI2665.1.

    • Search Google Scholar
    • Export Citation
  • Bulygina, O., V. Razuvaev, and N. Korshunova, 2009: Change in snow cover over northern Eurasia in the last decades. Environ. Res. Lett., 4, 04 5026, doi:10.1088/1748-9326/4/4/045026.

    • Search Google Scholar
    • Export Citation
  • Decharme, B., and H. Douville, 2006: Uncertainties in the GSWP-2 precipitation forcing and their impacts on regional and global hydrological simulations. Climate Dyn., 27, 695713, doi:10.1007/s00382-006-0160-6.

    • Search Google Scholar
    • Export Citation
  • Dyer, T., and T. Mote, 2006: Spatial variability and trends in observed snow depth over North America. Geophys. Res. Lett., 33, L16503, doi:10.1029/2006GL027258.

    • Search Google Scholar
    • Export Citation
  • Gatto, L. W., 1990: Monitoring river ice with Landsat images. Remote Sens. Environ., 32, 116, doi:10.1016/0034-4257(90)90094-3.

  • Gray, D. M., and T. D. Prowse, 1993: Snow and floating ice. Handbook of Hydrology, 1st ed. D. R. Maidment, Eds., McGraw-Hill, 7.1–7.58.

    • Search Google Scholar
    • Export Citation
  • Hatta, S., H. Hayakawa, H. Park, T. Yamazaki, K. Yamamoto, and T. Ohta, 2009: Long term runoff analysis of the Lena River basin using a distributed hydrological model. J. Japan Soc. Hydrol. Water Resour., 22, 177187, doi:10.3178/jjshwr.22.177.

    • Search Google Scholar
    • Export Citation
  • Hicks, F., W. Cui, and G. Ashton, 2009: Heat transfer and ice cover decay. River Ice Breakup, S. Beltaos, Ed., Water Resources Publications, 67–124.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp, doi:10.1017/CBO9781107415324.

  • Kim, Y., J. S. Kimball, K. Zhang, and K. C. McDonald, 2012: Satellite detection of increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: Implications for regional vegetation growth. Remote Sens. Environ., 121, 472487, doi:10.1016/j.rse.2012.02.014.

    • Search Google Scholar
    • Export Citation
  • Kim, Y., J. S. Kimball, K. Zhang, K. Didan, I. Velicogna, and K. C. McDonald, 2014: Attribution of divergent northern vegetation growth responses to lengthening non-frozen seasons using satellite optical-NIR and microwave remote sensing. Int. J. Remote Sens., 35, 37003721, doi:10.1080/01431161.2014.915595.

    • Search Google Scholar
    • Export Citation
  • Kim, Y., J. S. Kimball, D. A. Robinson, and C. Derksen, 2015: New satellite climate data records indicate strong coupling between recent frozen season changes and snow cover over high northern latitudes. Environ. Res. Lett., 10, 08 4004, doi:10.1088/1748-9326/10/8/084004.

    • Search Google Scholar
    • Export Citation
  • Kimball, J. S., K. C. McDonald, A. R. Keyser, S. Frolking, and S. W. Running, 2001: Application of the NASA scatterometer (NSCAT) for determining the daily frozen and nonfrozen landscape of Alaska. Remote Sens. Environ., 75, 113126, doi:10.1016/S0034-4257(00)00160-7.

    • Search Google Scholar
    • Export Citation
  • Lammers, R. B., J. W. Pundsack, and A. I. Siklomanov, 2007: Variability in river temperature, discharge, and energy flux from the Russian pan-Arctic landmass. J. Geophys. Res., 112, G04S59, doi:10.1029/2006JG000370.

    • Search Google Scholar
    • Export Citation
  • Lemke, P., and Coauthors, 2007: Observations: Changes in snow, ice and frozen ground. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 337–383. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter4.pdf.]

  • Lemmetyinen, J., A. Kontu, J. Karna, J. Vehvilainen, M. Takala, and J. Pulliainen, 2011: Correcting for the influence of frozen lakes in satellite microwave radiometer observations through application of a microwave emission model. Remote Sens. Environ., 115, 36953706, doi:10.1016/j.rse.2011.09.008.

    • Search Google Scholar
    • Export Citation
  • Lesack, L. F. W., P. Marsh, F. E. Hicks, and D. L. Forbes, 2014: Local spring warming drives earlier river-ice breakup in a large Arctic delta. Geophys. Res. Lett., 41, 15601566, doi:10.1002/2013GL058761.

    • Search Google Scholar
    • Export Citation
  • Ma, X., and Y. Fukushima, 2002: A numerical model of the river freezing process and its application to the Lena River. Hydrol. Processes, 16, 21312140, doi:10.1002/hyp.1146.

    • Search Google Scholar
    • Export Citation
  • Magnuson, J. J., and Coauthors, 2000: Historical trends in lake and river ice cover in the Northern Hemisphere. Science, 289, 17431746, doi:10.1126/science.289.5485.1743.

    • Search Google Scholar
    • Export Citation
  • Michel, B., 1971: Winter Regime of Rivers and Lakes. Cold Reg. Sci. Eng. Monogr., III-B1a, U.S. Army Cold Regions Research and Engineering Laboratory, 139 pp. [Available online at http://acwc.sdp.sirsi.net/client/en_US/search/asset/1011701.]

  • Murphy, M. A., I. P. Martini, and R. Rrotz, 2001: Seasonal changes in subarctic wetlands and river ice breakup detectable on RADARSAT images, southern Hudson Bay Lowland, Ontario, Canada. Can. J. Remote Sens., 27, 143158, doi:10.1080/07038992.2001.10854928.

    • Search Google Scholar
    • Export Citation
  • Ngo-Duc, T., T. Oki, and S. Kanae, 2007: A variable streamflow velocity method for global river routing model: Model description and preliminary results. Hydrol. Earth Syst. Sci. Discuss., 4, 43894414, doi:10.5194/hessd-4-4389-2007.

    • Search Google Scholar
    • Export Citation
  • Oki, T., and Y. C. Sud, 1998: Design of Total Runoff Integrating Pathways (TRIP)—A global river channel network. Earth Interact., 2, 137, doi:10.1175/1087-3562(1998)002<0001:DOTRIP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pappenberger, F., H. L. Cloke, G. Balsamo, T. Ngo-Duc, and T. Oki, 2010: Global runoff routing with the hydrological component of the ECMWF NWP system. Int. J. Climatol., 30, 21552174, doi:10.1002/joc.2028.

    • Search Google Scholar
    • Export Citation
  • Park, H., Y. Iijima, H. Yabuki, T. Ohta, J. Walsh, Y. Kodama, and T. Ohata, 2011: The application of a coupled hydrological and biogeochemical model (CHANGE) for modeling of energy, water, and CO2 exchanges over a larch forest in eastern Siberia. J. Geophys. Res., 116, D15102, doi:10.1029/2010JD015386.

    • Search Google Scholar
    • Export Citation
  • Park, H., H. Yabuki, and T. Ohata, 2012: Analysis of satellite and model datasets for variability and trends in Arctic snow extent and depth, 1948–2006. Polar Sci., 6, 2337, doi:10.1016/j.polar.2011.11.002.

    • Search Google Scholar
    • Export Citation
  • Park, H., J. E. Walsh, A. N. Fedorov, A. B. Sherstiukov, Y. Iijima, and T. Ohata, 2013a: The influence of climate and hydrological variables on opposite anomaly in active-layer thickness between Eurasian and North America watersheds. Cryosphere, 7, 631645, doi:10.5194/tc-7-631-2013.

    • Search Google Scholar
    • Export Citation
  • Park, H., J. E. Walsh, Y. Kim, T. Nakai, and T. Ohata, 2013b: The role of declining Arctic sea ice in recent decreasing terrestrial Arctic snow depths. Polar Sci., 7, 174187, doi:10.1016/j.polar.2012.10.002.

    • Search Google Scholar
    • Export Citation
  • Park, H., A. N. Fedorov, M. N. Zheleznyak, P. Y. Konstantinov, and J. E. Walsh, 2015: Effect of snow cover on pan-Arctic permafrost thermal regimes. Climate Dyn., 44, 28732895, doi:10.1007/s00382-014-2356-5.

    • Search Google Scholar
    • Export Citation
  • Pavelsky, T. M., and L. C. Smith, 2004: Spatial and temporal patterns in Arctic river ice breakup observed with MODIS and AVHRR time series. Remote Sens. Environ., 93, 328338, doi:10.1016/j.rse.2004.07.018.

    • Search Google Scholar
    • Export Citation
  • Prowse, T. D., and F. M. Conly, 1998: Effects of climate variability and flow regulation on ice-jam flooding of a northern delta. Hydrol. Processes, 12, 15891610, doi:10.1002/(SICI)1099-1085(199808/09)12:10/11<1589::AID-HYP683>3.0.CO;2-G.

    • Search Google Scholar
    • Export Citation
  • Prowse, T. D., and S. Beltaos, 2002: Climatic control of river-ice hydrology: A review. Hydrol. Processes, 16, 805822, doi:10.1002/hyp.369.

    • Search Google Scholar
    • Export Citation
  • Prowse, T. D., and B. R. Bonsal, 2004: Historical trends in river-ice break-up: A review. Hydrol. Res., 35, 281293.

  • Prowse, T. D., F. J. Wrona, J. Reist, J. J. Gibson, J. E. Hobbie, L. M. J. Levesque, and W. Vincent, 2006: Climate change effects on hydroecology of Arctic freshwater ecosystems. Ambio, 35, 347358, doi:10.1579/0044-7447(2006)35[347:CCEOHO]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ramankutty, R., and J. A. Foley, 1999: Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochem. Cycles, 13, 9971027, doi:10.1029/1999GB900046.

    • Search Google Scholar
    • Export Citation
  • Rawlins, M. A., K. C. McDonald, S. Frolking, R. B. Lammers, M. Fahnestock, J. S. Kimball, and C. J. Vörösmarty, 2005: Remote sensing of snow thaw at the pan-Arctic scale using the SeaWinds scatterometer. J. Hydrol., 312, 294311, doi:10.1016/j.jhydrol.2004.12.018.

    • Search Google Scholar
    • Export Citation
  • Rawlins, M. A., H. Ye, D. Yang, A. Shiklomanov, and K. C. McDonald, 2009: Divergence in seasonal hydrology across northern Eurasia: Emerging trends and waster cycle linkages. J. Geophys. Res., 114, D18119, doi:10.1029/2009JD011747.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, doi:10.1038/nature09051.

    • Search Google Scholar
    • Export Citation
  • Semmens, K. A., and J. M. Ramage, 2013: Recent changes in spring snowmelt timing in the Yukon River basin detected by passive microwave satellite data. Cryosphere, 7, 905916, doi:10.5194/tc-7-905-2013.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., D. H. Bromwich, M. P. Clark, A. J. Etringer, T. Zhang, and R. Lammers, 2002: Large-scale hydro-climatology of the terrestrial Arctic drainage system. J. Geophys. Res., 108, 8160, doi:10.1029/2001JD000919.

    • Search Google Scholar
    • Export Citation
  • Shiklomanov, A. I., and R. B. Lammers, 2014: River ice responses to a warming Arctic—Recent evidence from Russian rivers. Environ. Res. Lett., 9, 03 5008, doi:10.1088/1748-9326/9/3/035008.

    • Search Google Scholar
    • Export Citation
  • Shiklomanov, A. I., R. B. Lammers, and C. J. Vorosmarty, 2002: Widespread decline in hydrological monitoring threatens pan-Arctic research. Eos, Trans. Amer. Geophys. Union, 83, 13–17, doi:10.1029/2002EO000007.

    • Search Google Scholar
    • Export Citation
  • Slater, A. G., T. J. Bohn, J. L. McCreight, M. C. Serreze, and D. P. Lettenmaier, 2007: A multimodel simulation of pan-Arctic hydrology. J. Geophys. Res., 112, G04S45, doi:10.1029/2006JG000303.

    • Search Google Scholar
    • Export Citation
  • Smith, L. C., T. M. Pavelsky, G. M. MacDonald, A. I. Shiklomanov, and R. B. Lammers, 2007: Rising minimum daily flows in northern Eurasian rivers: A growing influence of groundwater in the high-latitude hydrologic cycle. J. Geophys. Res., 112, G04S47, doi:10.1029/2006JG000327.

    • Search Google Scholar
    • Export Citation
  • Su, F., J. C. Adam, L. C. Bowling, and D. P. Lettenmaier, 2005: Streamflow simulations of the terrestrial Arctic domain. J. Geophys. Res., 110, D08112, doi:10.1029/2004JD005518.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., and N. E. Zimmermann, 2007: An improved canopy integration scheme for a land surface model with prognostic canopy structure. J. Climate, 20, 39023923, doi:10.1175/JCLI4222.1.

    • Search Google Scholar
    • Export Citation
  • Van Vliet, M. T. H., J. R. Yearsley, W. H. P. Franssen, F. Ludwig, I. Haddeland, D. P. Lettenmaier, and P. Kabat, 2012: Coupled daily streamflow and water temperature modeling in large river basin. Hydrol. Earth Syst. Sci., 16, 43034321, doi:10.5194/hess-16-4303-2012.

    • Search Google Scholar
    • Export Citation
  • Vincent, F., D. Raucoules, T. Degroeve, G. Edwards, and M. Abolfazi Mostafavi, 2004: Detection of river/sea ice deformation using satellite interferometry: Limits and potential. Int. J. Remote Sens., 25, 35553571, doi:10.1080/01431160410001688303.

    • Search Google Scholar
    • Export Citation
  • Vuglinsky, V. S., 2006: Ice regime in the rivers of Russia, its dynamics during last decades and possible future changes. Proc. 18th IAHR International Symposium on Ice, Sapporo, Japan, Nakanishi Publishing Co., Ltd., 9398.

  • Weedon, G. P., G. Balsamo, N. Bellouin, S. Gomes, M. J. Best, and P. Viterbo, 2014: The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-Interim reanalysis data. Water Resour. Res., 50, 75057514, doi:10.1002/2014WR015638.

    • Search Google Scholar
    • Export Citation
  • Whitefield, J., P. Winsor, J. McClelland, and D. Menemenlis, 2015: A new river discharge and river temperature climatology data set for the pan-Arctic region. Ocean Modell., 88, 115, doi:10.1016/j.ocemod.2014.12.012.

    • Search Google Scholar
    • Export Citation
  • Wu, H., J. S. Kimball, M. M. Elsner, N. Mantua, R. F. Adler, and J. Stanford, 2012: Projected climate change impacts on the hydrology and temperature of Pacific Northwest rivers. Water Resour. Res., 48, W11530, doi:10.1029/2012WR012082.

    • Search Google Scholar
    • Export Citation
  • Yang, D., B. Ye, and A. Shiklomanov, 2004: Discharge characteristics and changes over the Ob River watershed in Siberia. J. Hydrometeor., 5, 595610, doi:10.1175/1525-7541(2004)005<0595:DCACOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, D., P. Marsh, and S. Ge, 2014: Heat flux calculations for Mackenzie and Yukon Rivers. Polar Sci., 8, 232241, doi:10.1016/j.polar.2014.05.001.

    • Search Google Scholar
    • Export Citation
  • Yoshikawa, Y., Y. Watanabe, and A. Itoh, 2014: A simple equation for ice sheet thickness and ice formation/breakup prediction. J. JSCE, 2, 203213, doi:10.2208/journalofjsce.2.1_203.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 939 277 25
PDF Downloads 533 131 17