• Adams, J. B., , M. E. Mann, , and C. M. Ammann, 2003: Proxy evidence for an El Niño-like response to volcanic forcing. Nature, 426, 274278, doi:10.1038/nature02101.

    • Search Google Scholar
    • Export Citation
  • Anchukaitis, K. J., , B. M. Buckley, , E. R. Cook, , B. I. Cook, , R. D. D’Arrigo, , and C. M. Ammann, 2010: Influence of volcanic eruptions on the climate of the Asian monsoon region. Geophys. Res. Lett., 37, L22703, doi:10.1029/2010GL044843.

    • Search Google Scholar
    • Export Citation
  • Berger, A., 1978: Long-term variations of daily insolation and quaternary climatic changes. J. Atmos. Sci., 35, 23622367, doi:10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., , R. Seager, , M. A. Cane, , and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196, doi:10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., , T. R. Ault, , and J. E. Smerdon, 2015: Unprecedented 21st century drought risk in the American southwest and central plains. Sci. Adv., 1, e1400082, doi:10.1126/sciadv.1400082.

    • Search Google Scholar
    • Export Citation
  • Cook, E., , C. Woodhouse, , C. Eakin, , D. Meko, , and D. Stahle, 2004: Long-term aridity changes in the western United States. Science, 306, 10151018, doi:10.1126/science.1102586.

    • Search Google Scholar
    • Export Citation
  • Cook, E., , K. Anchukaitis, , B. Buckley, , R. D’Arrigo, , G. Jacoby, , and W. Wright, 2010: Asian monsoon failure and megadrought during the last millennium. Science, 328, 486489, doi:10.1126/science.1185188.

    • Search Google Scholar
    • Export Citation
  • Crowley, T. J., , G. Zielinski, , B. Vinther, , R. Udisti, , K. Kreutzs, , J. Cole-Dai, , and E. Castellano, 2008: Volcanism and the Little Ice Age. PAGES Newsletter, Vol. 16, No. 2, 22–23. [Available online at http://www.geology.um.maine.edu/publications/Crowley_PAGES_2008.pdf.]

  • Emile-Geay, J., , R. Seager, , M. A. Cane, , E. R. Cook, , and G. H. Haug, 2008: Volcanoes and ENSO over the past millennium. J. Climate, 21, 31343148, doi:10.1175/2007JCLI1884.1.

    • Search Google Scholar
    • Export Citation
  • Gao, C. C., , A. Robock, , and C. Ammann, 2008: Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J. Geophys. Res., 113, D23111, doi:10.1029/2008JD010239.

    • Search Google Scholar
    • Export Citation
  • Grieser, J., , and C. D. Schonwiese, 1999: Parameterization of spatiotemporal patterns of volcanic aerosol induced stratospheric optical depth and its climate radiative forcing. Atmósfera, 12, 111133.

    • Search Google Scholar
    • Export Citation
  • Hurtt, G. C., and et al. , 2011: Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109, 117161, doi:10.1007/s10584-011-0153-2.

    • Search Google Scholar
    • Export Citation
  • Jacobi, J., , D. Perrone, , L. L. Duncan, , and G. Hornberger, 2013: A tool for calculating the Palmer drought indices. Water Resour. Res., 49, 60866089, doi:10.1002/wrcr.20342.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., , I. M. Held, , D. M. W. Frierson, , and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, doi:10.1175/2007JCLI2146.1.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and et al. , 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, doi:10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Knudsen, M. F., , B. H. Jacobsen, , M.-S. Seidenkrantz, , and J. Olsen, 2014: Evidence for external forcing of the Atlantic multidecadal oscillation since termination of the Little Ice Age. Nat. Commun., 5, 3323, doi:10.1038/ncomms4323.

    • Search Google Scholar
    • Export Citation
  • Kumar, K. K., , B. Rajagopalan, , M. Hoerling, , G. Bates, , and M. Cane, 2006: Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314, 115119, doi:10.1126/science.1131152.

    • Search Google Scholar
    • Export Citation
  • Landrum, L., , B. Otto-Bliesner, , E. R. Wahl, , A. Conley, , P. J. Lawrence, , N. Rosenbloom, , and H. Teng, 2013: Last millennium climate and its variability in CCSM4. J. Climate, 26, 10851111, doi:10.1175/JCLI-D-11-00326.1.

    • Search Google Scholar
    • Export Citation
  • Li, J., and et al. , 2013: El Niño modulations over the past seven centuries. Nat. Climate Change, 3, 822826, doi:10.1038/nclimate1936.

    • Search Google Scholar
    • Export Citation
  • Maher, N., , A. Sen Gupta, , and M. H. England, 2014: Drivers of decadal hiatus periods in the 20th and 21st centuries. Geophys. Res. Lett., 41, 59785986, doi:10.1002/2014GL060527.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., , and A. Timmermann, 2011: The effect of explosive tropical volcanism on ENSO. J. Climate, 24, 21782191, doi:10.1175/2010JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., , A. Timmermann, , and O. Timm, 2010: A unified proxy for ENSO and PDO variability since 1650. Climate Past, 6, 117, doi:10.5194/cp-6-1-2010.

    • Search Google Scholar
    • Export Citation
  • Mignot, J., , M. Khodri, , C. Frankignoul, , and J. Servonnat, 2011: Volcanic impact on the Atlantic Ocean over the last millennium. Climate Past, 7, 14391455, doi:10.5194/cp-7-1439-2011.

    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B., and et al. , 2015: Climate variability and change since 850 CE: An ensemble approach with the Community Earth System Model (CESM). Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-14-00233.1, in press.

    • Search Google Scholar
    • Export Citation
  • Palmer, W. C., 1965: Meteorological drought. U.S. Weather Bureau Research Paper 45, 58 pp. [Available online at https://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf.]

  • Pongratz, J., , T. Raddatz, , C. H. Reick, , M. Esch, , and M. Claussen, 2009: Radiative forcing from anthropogenic land cover change since AD 800. Geophys. Res. Lett., 36, L02709, doi:10.1029/2008GL036394.

    • Search Google Scholar
    • Export Citation
  • Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191219, doi:10.1029/1998RG000054.

  • Schmidt, G. A., and et al. , 2011: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci. Model Dev., 4, 3345, doi:10.5194/gmd-4-33-2011.

    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., , C. M. Ammann, , B. L. Otto-Bliesner, , and D. S. Kaufman, 2009: Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model. J. Geophys. Res., 114, D15101, doi:10.1029/2008JD011222.

    • Search Google Scholar
    • Export Citation
  • Schneider, L., , J. E. Smerdon, , U. Buntgen, , R. J. S. Wilson, , V. S. Myglan, , A. V. Kirdyanov, , and J. Esper, 2015: Revising midlatitude summer temperatures back to A.D. 600 based on a wood density network. Geophys. Res. Lett., 42, 45564562, doi:10.1002/2015GL063956.

    • Search Google Scholar
    • Export Citation
  • Seager, R., , N. Harnik, , Y. Kushnir, , W. Robinsin, , and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978, doi:10.1175/1520-0442(2003)016<2960:MOHSCV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sigl, M., and et al. , 2014: Insights from Antarctica on volcanic forcing during the common era. Nat. Climate Change, 4, 693697, doi:10.1038/nclimate2293.

    • Search Google Scholar
    • Export Citation
  • Sigl, M., and et al. , 2015: Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature, 523, 543549, doi:10.1038/nature14565.

    • Search Google Scholar
    • Export Citation
  • Smith, T., , R. W. Reynolds, , T. C. Peterson, , and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., , and E. Stommel, 1983: Volcano Weather: The Story of 1816, the Year Without a Summer. Seven Seas Press, 177 pp.

  • Stothers, R. B., 1984: The great Tambora eruption in 1815 and its aftermath. Science, 224, 11911198, doi:10.1126/science.224.4654.1191.

    • Search Google Scholar
    • Export Citation
  • Timmreck, C., 2012: Modeling the climatic effects of large explosive volcanic eruptions. Wiley Interdiscip. Rev.: Climate Change, 3, 545564, doi:10.1002/wcc.192.

    • Search Google Scholar
    • Export Citation
  • Vieira, L. E. A., , S. K. Solanki, , N. A. Krivova, , and I. Usoskin, 2010: Evolution of the solar irradiance on time scales of years to millennia. Astron. Astrophys., 509, A100, doi:10.1051/0004-6361/200913276.

    • Search Google Scholar
    • Export Citation
  • Wahl, E. R., , H. F. Diaz, , J. E. Smerdon, , and C. M. Ammann, 2014: Late winter temperature response to large tropical volcanic eruptions in temperate western North America: Relationship to ENSO phases. Global Planet. Change, 122, 238250, doi:10.1016/j.gloplacha.2014.08.005.

    • Search Google Scholar
    • Export Citation
  • Zanchettin, D., , C. Timmreck, , H.-F. Graf, , A. Rubino, , S. Lorenz, , K. Lohmann, , K. Krueger, , and J. H. Jungclaus, 2012: Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Climate Dyn., 39, 419444, doi:10.1007/s00382-011-1167-1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 215 215 47
PDF Downloads 151 151 38

“El Niño Like” Hydroclimate Responses to Last Millennium Volcanic Eruptions

View More View Less
  • 1 Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The hydroclimate response to volcanic eruptions depends both on volcanically induced changes to the hydrologic cycle and on teleconnections with the El Niño–Southern Oscillation (ENSO), complicating the interpretation of offsets between proxy reconstructions and model output. Here, these effects are separated, using the Community Earth System Model Last Millennium Ensemble (CESM-LME), by examination of ensemble realizations with distinct posteruption ENSO responses. Hydroclimate anomalies in monsoon Asia and the western United States resemble the El Niño teleconnection pattern after “Tropical” and “Northern” eruptions, even when ENSO-neutral conditions are present. This pattern results from Northern Hemisphere (NH) surface cooling, which shifts the intertropical convergence zone equatorward, intensifies the NH subtropical jet, and suppresses the Southeast Asian monsoon. El Niño events following an eruption can then intensify the ENSO-neutral hydroclimate signature, and El Niño probability is enhanced two boreal winters following all eruption types. Additionally, the eruption-year ENSO response to eruptions is hemispherically dependent: the winter following a Northern eruption tends toward El Niño, while Southern volcanoes enhance the probability of La Niña events and Tropical eruptions have a very slight cooling effect. Overall, eruption-year hydroclimate anomalies in CESM disagree with the proxy record in both Southeast Asia and North America, suggesting that model monsoon representation cannot be solely responsible. Possible explanations include issues with the model ENSO response, the spatial or temporal structure of volcanic aerosol distribution, or data uncertainties.

Corresponding author address: Samantha Stevenson, Climate and Global Dynamics Division, National Center for Atmospheric Research, 1850 Table Mesa Dr., Boulder, CO 80303. E-mail: samantha@ucar.edu

Abstract

The hydroclimate response to volcanic eruptions depends both on volcanically induced changes to the hydrologic cycle and on teleconnections with the El Niño–Southern Oscillation (ENSO), complicating the interpretation of offsets between proxy reconstructions and model output. Here, these effects are separated, using the Community Earth System Model Last Millennium Ensemble (CESM-LME), by examination of ensemble realizations with distinct posteruption ENSO responses. Hydroclimate anomalies in monsoon Asia and the western United States resemble the El Niño teleconnection pattern after “Tropical” and “Northern” eruptions, even when ENSO-neutral conditions are present. This pattern results from Northern Hemisphere (NH) surface cooling, which shifts the intertropical convergence zone equatorward, intensifies the NH subtropical jet, and suppresses the Southeast Asian monsoon. El Niño events following an eruption can then intensify the ENSO-neutral hydroclimate signature, and El Niño probability is enhanced two boreal winters following all eruption types. Additionally, the eruption-year ENSO response to eruptions is hemispherically dependent: the winter following a Northern eruption tends toward El Niño, while Southern volcanoes enhance the probability of La Niña events and Tropical eruptions have a very slight cooling effect. Overall, eruption-year hydroclimate anomalies in CESM disagree with the proxy record in both Southeast Asia and North America, suggesting that model monsoon representation cannot be solely responsible. Possible explanations include issues with the model ENSO response, the spatial or temporal structure of volcanic aerosol distribution, or data uncertainties.

Corresponding author address: Samantha Stevenson, Climate and Global Dynamics Division, National Center for Atmospheric Research, 1850 Table Mesa Dr., Boulder, CO 80303. E-mail: samantha@ucar.edu
Save