• Allen, M. R., , and S. F. B. Tett, 1999: Checking for model consistency in optimal fingerprinting. Climate Dyn., 15, 419434, doi:10.1007/s003820050291.

    • Search Google Scholar
    • Export Citation
  • Berk, A., , G. P. Anderson, , P. K. Acharya, , and E. P. Shettle, 2008: MODTRAN5 version 2 user’s manual. Spectral Sciences, Inc., and Air Force Geophysics Laboratory, Hanscom AFB, 100 pp.

  • Forster, P. M., , T. Andrews, , P. Good, , J. Gregory, , L. Jackson, , and M. D. Zelinka, 2013: Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res. Atmos., 118, 11391150, doi:10.1002/jgrd.50174.

    • Search Google Scholar
    • Export Citation
  • Geier, E. B., and et al. , 2003: CERES single satellite footprint TOA/surface fluxes and clouds (SSF) collection document. NASA Langley Research Center, Hampton, VA, 224 pp. [Available online at https://eosweb.larc.nasa.gov/project/ceres/ssf_table.]

  • Goody, R., , J. Anderson, , and G. North, 1998: Testing climate models: An approach. Bull. Amer. Meteor. Soc., 79, 25412549, doi:10.1175/1520-0477(1998)079<2541:TCMAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1997: Multi-pattern fingerprint method for detection and attribution of climate change. Climate Dyn., 13, 601612, doi:10.1007/s003820050185.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., , S. Leroy, , and J. Anderson, 2010a: Determining longwave forcing and feedback using infrared spectra and GNSS radio occultation. J. Climate, 23, 60276035, doi:10.1175/2010JCLI3588.1.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., , S. Leroy, , P. J. Gero, , J. Dykema, , and J. Anderson, 2010b: Separation of longwave climate feedbacks from spectral observation. J. Geophys. Res., 115, D07104, doi:10.1029/2009JD012766.

    • Search Google Scholar
    • Export Citation
  • Jin, Z., , T. P. Charlock, , K. Rutledge, , K. Stamnes, , and Y. Wang, 2006: Analytical solution of radiative transfer in the coupled atmosphere–ocean system with a rough surface. Appl. Opt., 45, 74437455, doi:10.1364/AO.45.007443.

    • Search Google Scholar
    • Export Citation
  • Jin, Z., , B. Wielicki, , C. Loukachine, , T. Charlock, , D. Young, , and S. Noel, 2011: Spectral kernel approach to study radiative response of climate variables and interannual variability of reflected solar spectrum. J. Geophys. Res., 116, D10113, doi:10.1029/2010JD015228.

    • Search Google Scholar
    • Export Citation
  • Jin, Z., , C. Lukachin, , A. Gopalan, , and W. Sun, 2012: Correlation between SCIAMACHY, MODIS, and CERES reflectance measurements: Implications for CLARREO. J. Geophys. Res., 117, D05114, doi:10.1029/2011JD017051.

    • Search Google Scholar
    • Export Citation
  • Jin, Z., , C. Lukashin, , Y. Qiao, , and A. Gopalan, 2013: An efficient and effective method to simulate the Earth spectral reflectance over large temporal and spatial scales. Geophys. Res. Lett., 40, 374379, doi:10.1002/grl.50116.

    • Search Google Scholar
    • Export Citation
  • Jin, Z., , C. Loukachine, , R. Yolanda, , B. Wielicki, , D. Feldman, , and W. Collins, 2014: Interannual variability of the Earth’s spectral solar reflectance from measurements and simulations. J. Geophys. Res. Atmos., 119, 44584470, doi:10.1002/2013JD021056.

    • Search Google Scholar
    • Export Citation
  • Justice, C. O., and et al. , 1998: The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens., 36, 12281249, doi:10.1109/36.701075.

    • Search Google Scholar
    • Export Citation
  • Kato, S., , F. G. Rose, , X. Liu, , B. A. Wielicki, , and M. G. Mlynczak, 2014: Retrieval of atmospheric and cloud property anomalies and their trend from temporally and spatially averaged infrared spectra observed from space. J. Climate, 27, 44034420, doi:10.1175/JCLI-D-13-00566.1.

    • Search Google Scholar
    • Export Citation
  • Leroy, S., , J. G. Anderson, , J. Dykema, , and R. Goody, 2008: Testing climate models using thermal infrared spectra. J. Climate, 21, 18631875, doi:10.1175/2007JCLI2061.1.

    • Search Google Scholar
    • Export Citation
  • Ohring, G. B., , B. A. Wielicki, , R. Spencer, , B. Emery, , and R. Datla, 2005: Satellite instrument calibration for measuring global climate change: Report on a workshop. Bull. Amer. Meteor. Soc., 86, 13031313, doi:10.1175/BAMS-86-9-1303.

    • Search Google Scholar
    • Export Citation
  • O’Reilly, J. E., , S. Maritorena, , B. G. Mitchell, , D. A. Siegel, , K. L. Carder, , S. A. Garver, , M. Kahru, , and C. McClain, 1998: Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res., 103, 24 93724 953, doi:10.1029/98JC02160.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and et al. , 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, doi:10.1175/JCLI-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., , I. M. Held, , R. Colman, , K. M. Shell, , J. T. Kiehl, , and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520, doi:10.1175/2007JCLI2110.1.

    • Search Google Scholar
    • Export Citation
  • Wetherald, R. T., , and S. Manabe, 1988: Cloud feedback processes in a general circulation model. J. Atmos. Sci., 45, 13971416, doi:10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and et al. , 2013: Achieving climate change absolute accuracy in orbit. Bull. Amer. Meteor. Soc., 94, 15191539, doi:10.1175/BAMS-D-12-00149.1.

    • Search Google Scholar
    • Export Citation
  • Wu, A., , X. J. Xiong, , Z. Jin, , C. Lukashin, , B. Wenny, , A. Angal, , and J. Butler, 2015: Sensitivity of intercalibration uncertainty of the CLARREO reflected solar spectrometer features. IEEE Trans. Geosci. Remote Sens., 53, 47414751, doi:10.1109/TGRS.2015.2409030.

    • Search Google Scholar
    • Export Citation
  • Yang, S.-K., , S. Zhou, , and A. J. Miller, 2000: SMOBA: A 3-dimensional daily ozone analysis using SBUV/2 and TOVS measurements. [Available online at http://www.cpc.ncep.noaa.gov/products/stratosphere/SMOBA/smoba_doc.shtml.]

  • Zelinka, M. D., , S. A. Klein, , and D. L. Hartmann, 2012: Computing and partitioning cloud feedbacks using cloud property histograms. Part II: Attribution to changes in cloud amount, altitude, and optical depth. J. Climate, 25, 37363754, doi:10.1175/JCLI-D-11-00249.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 28 28 5
PDF Downloads 16 16 4

An Initial Study on Climate Change Fingerprinting Using the Reflected Solar Spectra

View More View Less
  • 1 Science Systems and Applications, and Climate Science Branch, NASA Langley Research Center, Hampton, Virginia
© Get Permissions
Restricted access

Abstract

Attribution of averaged spectral variation over large spatial and temporal scales to different climate variables is central to climate change fingerprinting. Using 10 years of satellite data for simulation, the authors generate a group of observation-based spectral fingerprints and a time series of monthly mean reflectance spectra over the ocean in five large latitude regions and globally. Next, these fingerprints and the interannual variation spectra are used to retrieve the interannual changes in the relevant climate variables to test the concept of using the spectral fingerprinting approach for climate change attribution. Comparing the fingerprinting retrieval of climate variable change to the actual underlying variable change, the RMS differences between the two are less than twice as large as the monthly variability for all variables in all regions. Instances where larger errors are observed correspond to those variables with large nonlinear radiative response, such as the cloud optical depth and the ice particle size. Using the linear fingerprinting approach and accounting for the nonlinear radiative error in fingerprints results in significantly higher retrieval accuracy; the RMS errors are reduced to less than the monthly variability for nearly all variables, indicating the profound impact of the nonlinear error on fingerprinting retrieval. Another important finding is that if the cloud fraction is known a priori, the retrieval accuracy in cloud optical depth would be improved substantially. Moreover, a better retrieval for the water vapor amount and aerosol optical depth can be achieved from the clear-sky data only. The test results demonstrate that climate change fingerprinting based on reflected solar benchmark spectra is possible.

Corresponding author address: Zhonghai Jin, Mail Stop 420, NASA Langley Research Center, Hampton, VA 23681-2199. E-mail: zhonghai.jin@nasa.gov

Abstract

Attribution of averaged spectral variation over large spatial and temporal scales to different climate variables is central to climate change fingerprinting. Using 10 years of satellite data for simulation, the authors generate a group of observation-based spectral fingerprints and a time series of monthly mean reflectance spectra over the ocean in five large latitude regions and globally. Next, these fingerprints and the interannual variation spectra are used to retrieve the interannual changes in the relevant climate variables to test the concept of using the spectral fingerprinting approach for climate change attribution. Comparing the fingerprinting retrieval of climate variable change to the actual underlying variable change, the RMS differences between the two are less than twice as large as the monthly variability for all variables in all regions. Instances where larger errors are observed correspond to those variables with large nonlinear radiative response, such as the cloud optical depth and the ice particle size. Using the linear fingerprinting approach and accounting for the nonlinear radiative error in fingerprints results in significantly higher retrieval accuracy; the RMS errors are reduced to less than the monthly variability for nearly all variables, indicating the profound impact of the nonlinear error on fingerprinting retrieval. Another important finding is that if the cloud fraction is known a priori, the retrieval accuracy in cloud optical depth would be improved substantially. Moreover, a better retrieval for the water vapor amount and aerosol optical depth can be achieved from the clear-sky data only. The test results demonstrate that climate change fingerprinting based on reflected solar benchmark spectra is possible.

Corresponding author address: Zhonghai Jin, Mail Stop 420, NASA Langley Research Center, Hampton, VA 23681-2199. E-mail: zhonghai.jin@nasa.gov
Save