• Alexander, M. A., , I. Blade, , M. Newman, , J. R. Lanzante, , N.-C. Lau, , and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, doi:10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andersson, A., , K. Fennig, , C. Klepp, , S. Bakan, , H. Graßl, , and J. Schulz, 2010: The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS-3. Earth Syst. Sci. Data, 2, 215234, doi:10.5194/essd-2-215-2010.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, doi:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cane, M. A., , A. C. Clement, , A. Kaplan, , Y. Kushnir, , D. Pozdnyakov, , R. Seager, , S. E. Zebiak, , and R. Murtugudde, 1997: Twentieth-century sea surface temperature trends. Science, 275, 957960, doi:10.1126/science.275.5302.957.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , and A. S. Phillips, 2009: Atmospheric circulation trends, 1950–2000: The relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J. Climate, 22, 396413, doi:10.1175/2008JCLI2453.1.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., , G. A. Vecchi, , and A. C. Clement, 2013: Detectability of changes in the Walker circulation in response to global warming. J. Climate, 26, 40384048, doi:10.1175/JCLI-D-12-00531.1.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., , S. E. Wijffels, , and R. J. Matear, 2012: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336, 455458, doi:10.1126/science.1212222.

    • Search Google Scholar
    • Export Citation
  • Fan, F., , M. Mann, , S. Lee, , and J. Evans, 2012: Future changes in the South Asian summer monsoon: An analysis of the CMIP3 multimodel projections. J. Climate, 25, 39093928, doi:10.1175/JCLI-D-11-00133.1.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , C. M. Johanson, , S. G. Warren, , and D. J. Seidel, 2004: Contribution of stratospheric cooling to satellite-inferred tropospheric temperature trends. Nature, 429, 5558, doi:10.1038/nature02524.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., , S. Manabe, , and C. M. Johanson, 2011: On the warming in the tropical upper troposphere: Models versus observations. Geophys. Res. Lett., 38, L15704, doi:10.1029/2011GL048101.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., , N. P. Gillett, , and F. W. Zwiers, 2013: Overestimated global warming over the past 20 years. Nat. Climate Change, 3, 767769, doi:10.1038/nclimate1972.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., , and B. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, doi:10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., , S. J. Woolnough, , and G. M. S. Lister, 2012: Precipitation distributions for explicit versus parametrized convection in a large-domain high-resolution tropical case study. Quart. J. Roy. Meteor. Soc., 138, 16921708, doi:10.1002/qj.1903.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. 3rd ed. Academic Press, 511 pp.

  • Hoskins, B. J., , and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, doi: 10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., , J. J. Hack, , D. Shea, , J. M. Caron, , and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, doi:10.1175/2008JCLI2292.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-K., , and S. Lee, 2001: Hadley cell dynamics in a primitive equation model: Part I. Axisymmetric flow. J. Atmos. Sci., 58, 28452858, doi:10.1175/1520-0469(2001)058<2845:HCDIAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8, 21812199, doi:10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnan, R., and et al. , 2013: Will the South Asian monsoon overturning circulation stabilize any further? Climate Dyn., 40, 187211, doi:10.1007/s00382-012-1317-0.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., , I. M. Held, , and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249, doi:10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M., , S. Lee, , and B. Lyon, 2013: Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Climate Change, 3, 571576, doi:10.1038/nclimate1840.

    • Search Google Scholar
    • Export Citation
  • Ma, J., , S.-P. Xie, , and Y. Kosaka, 2012: Mechanisms for tropical tropospheric circulation change in response to global warming. J. Climate, 25, 29792994. doi:10.1175/JCLI-D-11-00048.1.

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., , and F. J. Wentz, 2009: Construction of the Remote Sensing Systems V3.2 atmospheric temperature records from the MSU and AMSU microwave sounders. J. Atmos. Oceanic Technol., 26, 10401056, doi:10.1175/2008JTECHA1176.1.

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., , F. J. Wentz, , P. Thorne, , and D. Bernie, 2011: Assessing uncertainty in estimates of atmospheric temperature changes from MSU and AMSU using a Monte-Carlo estimation technique. J. Geophys. Res., 116, D08112, doi:10.1029/2010JD014954.

    • Search Google Scholar
    • Export Citation
  • Mitas, C. M., , and A. Clement, 2006: Recent behavior of the Hadley cell and tropical thermodynamics in climate models and reanalysis. Geophys. Res. Lett., 33, L01810, doi:10.1029/2005GL024406.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., , P. W. Thorne, , P. A. Stott, , and L. J. Gray, 2013: Revisiting the controversial issue of tropical tropospheric temperature trends. Geophys. Res. Lett., 40, 28012806, doi:10.1029/2012GL054022.

    • Search Google Scholar
    • Export Citation
  • Palmen, E., , and C. W. Newton, 1969: Atmospheric Circulation Systems. International Geophysics Series, Vol. 13, Academic Press, 603 pp.

  • Park, S.-C., , B. J. Sohn, , and B. Wang, 2007: Satellite assessment of divergent water vapor transport from NCEP, ERA40, and JRA25 reanalyses over the Asian summer monsoon region. J. Meteor. Soc. Japan, 85, 615632, doi:10.2151/jmsj.85.615.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., , D. E. Parker, , E. B. Horton, , C. K. Folland, , L. V. Alexander, , D. P. Rowell, , E. C. Kent, , and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Sandeep, S., , F. Stordal, , P. D. Sardeshmukh, , and G. P. Compo, 2014: Pacific Walker circulation variability in coupled and uncoupled climate models. Climate Dyn., 43, 103117, doi:10.1007/s00382-014-2135-3.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., , Y. Zhang, , A. Beljaars, , J.-C. Golaz, , A. R. Jacobson, , and B. Medeiros, 2012: Climatology of the planetary boundary layer over the continental United States and Europe. J. Geophys. Res., 117, D17106, doi:10.1029/2012JD018143.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S., , J. R. Lanzante, , and C. L. Meyer, 2005: Radiosonde daytime biases and late-20th century warming. Science, 309, 15561559, doi:10.1126/science.1115640.

    • Search Google Scholar
    • Export Citation
  • Singh, M. S., , and P. A. O’Gorman, 2012: Upward shift of the atmospheric general circulation under global warming: Theory and simulations. J. Climate, 25, 82598276, doi:10.1175/JCLI-D-11-00699.1.

    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., , and S.-C. Park, 2010: Strengthened tropical circulations in past three decades inferred from water vapor transport. J. Geophys. Res., 115, D15112, doi:10.1029/2009JD013713.

    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., , E. A. Smith, , F. R. Robertson, , and S. C. Park, 2004: Derived over-ocean water vapor transports from satellite retrieved EP datasets. J. Climate, 17, 13521365, doi:10.1175/1520-0442(2004)017<1352:DOWVTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., , S.-W. Yeh, , J. Schmetz, , and H.-J. Song, 2013: Observational evidences of Walker circulation changes over the last 30 years contrasting with GCM results. Climate Dyn., 40, 17211732, doi:10.1007/s00382-012-1484-z.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., , and J. R. Christy, 1992: Precision and radiosonde validation of satellite gridpoint temperature anomalies. Part II: A tropospheric retrieval and trends during 1979–90. J. Climate, 5, 858866, doi:10.1175/1520-0442(1992)005<0858:PARVOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., , G. Sugihara, , and A. A. Tsonis, 2009: Long-term natural variability and 20th century climate change. Proc. Natl. Acad. Sci. USA, 106, 16 12016 123, doi:10.1073/pnas.0908699106.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., , R. J. Stouffer, , and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., , S.-P. Xie, , C. Deser, , Y. Kosaka, , and Y. Okumura, 2012: Slowdown of the Walker circulation by tropical Indo–Pacific warming. Nature, 491, 439443, doi:10.1038/nature11576.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, doi:10.1175/JCLI4258.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , B. J. Soden, , A. T. Wittenberg, , I. M. Held, , A. Leetmaa, , and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376, doi:10.1038/nature04744.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., , Y.-G. Ham, , and J.-Y. Lee, 2012: Changes in the tropical Pacific SST trend from CMIP3 to CMIP5 and its implication of ENSO. J. Climate, 25, 77647771, doi:10.1175/JCLI-D-12-00304.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 102 102 14
PDF Downloads 97 97 17

The Role of the Dry Static Stability for the Recent Change in the Pacific Walker Circulation

View More View Less
  • 1 School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
  • | 2 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, and School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
  • | 3 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 4 School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea
© Get Permissions
Restricted access

Abstract

There is an uncertainty in how the Pacific Walker circulation (PWC) will change in response to increased greenhouse gas (GHG) warming. On average, climate models predict that the PWC will weaken. Observational evidence is mixed, with some evidence supporting the models while others do not. In this study, insight into the PWC trend is provided by examining the tropical dry static stability, a quantity that is inversely proportional to the strength of the PWC. For the 1979–2012 period, the static stability increased markedly in all phase 5 of the Coupled Model Intercomparison Project (CMIP5) models, far more so than in the satellite and global reanalysis data, which show a strengthening of the PWC. The stabilization is greater for a subset of models that simulate a significant weakening of the PWC.

With the observed sea surface temperature as the lower boundary condition, over the western tropical Pacific, atmospheric models that belong to the weakening-PWC-CMIP5 group produce greater stabilization than those that belong to the strengthening-PWC-CMIP5 group. Compared with the latter group, the former group of atmospheric models simulates weaker trade winds over the western and central tropical Pacific and, consistent with the Bjerknes mechanism, the corresponding CMIP5 models produce a weaker west–east gradient in tropical SST. Given that the models’ convective parameterizations overstabilize the atmosphere compared with an explicit convection, the findings here suggest that the models’ representations of tropical convection and stability contribute to the models’ tendency to simulate a weakening of the PWC and an El Niño–like SST.

Denotes Open Access content.

Corresponding author address: Sukyoung Lee, Dept. of Meteorology, The Pennsylvania State University, 503 Walker Bldg., University Park, PA 16802. E-mail: sxl31@psu.edu

Abstract

There is an uncertainty in how the Pacific Walker circulation (PWC) will change in response to increased greenhouse gas (GHG) warming. On average, climate models predict that the PWC will weaken. Observational evidence is mixed, with some evidence supporting the models while others do not. In this study, insight into the PWC trend is provided by examining the tropical dry static stability, a quantity that is inversely proportional to the strength of the PWC. For the 1979–2012 period, the static stability increased markedly in all phase 5 of the Coupled Model Intercomparison Project (CMIP5) models, far more so than in the satellite and global reanalysis data, which show a strengthening of the PWC. The stabilization is greater for a subset of models that simulate a significant weakening of the PWC.

With the observed sea surface temperature as the lower boundary condition, over the western tropical Pacific, atmospheric models that belong to the weakening-PWC-CMIP5 group produce greater stabilization than those that belong to the strengthening-PWC-CMIP5 group. Compared with the latter group, the former group of atmospheric models simulates weaker trade winds over the western and central tropical Pacific and, consistent with the Bjerknes mechanism, the corresponding CMIP5 models produce a weaker west–east gradient in tropical SST. Given that the models’ convective parameterizations overstabilize the atmosphere compared with an explicit convection, the findings here suggest that the models’ representations of tropical convection and stability contribute to the models’ tendency to simulate a weakening of the PWC and an El Niño–like SST.

Denotes Open Access content.

Corresponding author address: Sukyoung Lee, Dept. of Meteorology, The Pennsylvania State University, 503 Walker Bldg., University Park, PA 16802. E-mail: sxl31@psu.edu
Save