• Altaratz, O., , Z. Levin, , Y. Yair, , and B. Ziv, 2003: Lightning activity over land and sea on the eastern coast of the Mediterranean. Mon. Wea. Rev., 131, 20602070, doi:10.1175/1520-0493(2003)131<2060:LAOLAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Biswas, K. R., , and P. V. Hobbs, 1990: Lightning over the Gulf Stream. Geophys. Res. Lett., 17, 941943, doi:10.1029/GL017i007p00941.

  • Boccippio, D. J., , W. J. Koshak, , and R. J. Blakeslee, 2002: Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: Predicted diurnal variability. J. Atmos. Oceanic Technol., 19, 13181332, doi:10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., , and D. R. MacGorman, 2013: Theory and observations of controls on lightning flash size spectra. J. Atmos. Sci., 70, 40124028, doi:10.1175/JAS-D-12-0289.1.

    • Search Google Scholar
    • Export Citation
  • Calhoun, K. M., , D. R. MacGorman, , C. L. Ziegler, , and M. I. Biggerstaff, 2013: Evolution of lightning activity and storm charge relative to dual-Doppler analysis of a high-precipitation supercell storm. Mon. Wea. Rev., 141, 21992223, doi:10.1175/MWR-D-12-00258.1.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., , M. J. Murphy, , T. L. McCormick, , and N. W. S. Demetriades, 2005: Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system. J. Geophys. Res., 110, D03105, doi:10.1029/2003JD004371.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , E. B. Buechler, , and J. B. Richard, 2014: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res., 135–136, 404414, doi:10.1016/j.atmosres.2012.06.028.

    • Search Google Scholar
    • Export Citation
  • Chen, L., , Y. Zhang, , W. Lu, , D. Zheng, , Y. Zhang, , S. Chen, , and Z. Huang, 2012: Performance evaluation for a lightning location system based on observations of artificially triggered lightning and natural lightning flashes. J. Atmos. Oceanic Technol., 29, 18351844, doi:10.1175/JTECH-D-12-00028.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S., , Y. Du, , L. Fan, , H. He, , and D. Zhong, 2002: Evaluation of the Guang Dong lightning-location system with transmission line fault data. Proc. Inst. Elect. Eng. Sci. Meas. Technol., 149, 916, doi:10.1049/ip-smt:20020131.

    • Search Google Scholar
    • Export Citation
  • Christian, H. J., and et al. , 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., 108, 4005, doi:10.1029/2002JD002347.

    • Search Google Scholar
    • Export Citation
  • Chronis, T. G., 2012: Preliminary lightning observations over Greece. J. Geophys. Res., 117, D03113, doi:10.1029/2011JD017063.

  • Chronis, T. G., , K. Cummins, , R. Said, , W. Koshak, , E. McCaul, , E. R. Williams, , G. T. Stano, , and M. Grant, 2015: Climatological diurnal variation of negative CG lightning peak current over the continental United States. J. Geophys. Res. Atmos., 120, 582589, doi:10.1002/2014JD022547.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., , M. J. Murphy, , E. A. Bardo, , W. L. Hiscox, , R. B. Pyle, , and A. E. Pifer, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103, 90359044, doi:10.1029/98JD00153.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., , J. A. Cramer, , W. A. Brooks, , and E. P. Krider, 2005: On the effect of land-sea and other earth surface discontinuities on LLS-inferred lightning parameters. Proc. Eighth Int. Symp. on Lightning Protection, São Paulo, Brazil, Institute of Energy and Environment of the University of São Paulo–Institute of Electrical and Electronics Engineers, 106111.

  • Ding, Y., , and Z. Wang, 2008: A study of rainy seasons in China. Meteor. Atmos. Phys., 100, 121138, doi:10.1007/s00703-008-0299-2.

  • Gill, T., 2009: Initial steps in the development of a comprehensive lightning climatology of South Africa. M.S. thesis, School of Geography, Archaeology and Environmental Studies, University of Witwatersrand, 108 pp.

  • Goodman, S. J., , and D. R. MacGorman, 1986: Cloud-to-ground lightning activity in mesoscale convective complexes. Mon. Wea. Rev., 114, 23202328, doi:10.1175/1520-0493(1986)114<2320:CTGLAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hidayat, S., , and M. Ishii, 1998: Spatial and temporal distribution of lightning activity around Java. J. Geophys. Res., 103, 14 00114 009, doi:10.1029/97JD01576.

    • Search Google Scholar
    • Export Citation
  • Holle, R. L., 2014: Diurnal variations of NLDN-reported cloud-to-ground lightning in the United States. Mon. Wea. Rev., 142, 10371052, doi:10.1175/MWR-D-13-00121.1.

    • Search Google Scholar
    • Export Citation
  • Hutchins, M. L., , R. H. Holzworth, , K. S. Virts, , J. M. Wallace, , and S. Heckman, 2013: Radiated VLF energy differences of land and oceanic lightning. Geophys. Res. Lett., 40, 23902394, doi:10.1002/grl.50406.

    • Search Google Scholar
    • Export Citation
  • Jian, M., 1994: The division of seasons for the South China region. Acta Sci. Natur. Univ. Sunyatseni, 33, 131133.

  • Kandalgaonkar, S. S., , M. I. R. Tinmaker, , J. R. Kulkarni, , A. Nath, , M. K. Kulkarni, , and H. K. Trimbake, 2005: Spatio-temporal variability of lightning activity over the Indian region. J. Geophys. Res., 110, D11108, doi:10.1029/2004JD005631.

    • Search Google Scholar
    • Export Citation
  • Kochtubajda, B., , W. R. Burrows, , and B. E. Power, 2006: Large current lightning flashes in Canada. Proc. Second Conf. on Meteorological Applications of Lightning Data, Atlanta, Georgia, Amer. Meteor. Soc., P2.11. [Available online at https://ams.confex.com/ams/pdfpapers/104045.pdf.]

  • Krider, E. P., , C. Leteinturier, , and J. C. Willet, 1996: Submicrosecond fields radiated during the onset of first return strokes in cloud-to-ground lightning. J. Geophys. Res., 101, 15891597, doi:10.1029/95JD02998.

    • Search Google Scholar
    • Export Citation
  • Kuleshov, Y., , D. Mackerras, , and M. Darveniza, 2006: Spatial distribution and frequency of lightning activity and lightning flash density maps for Australia. J. Geophys. Res., 111, D19105, doi:10.1029/2005JD006982.

    • Search Google Scholar
    • Export Citation
  • Kumar, P. R., , and A. K. Kamra, 2010: Lightning activity variations over three islands in a tropical monsoon region. Atmos. Res., 98, 309316, doi:10.1016/j.atmosres.2010.07.014.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., , W. Barnes, , T. Kozu, , J. Shiue, , and J. Simpron, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., 2007: University of Utah TRMM precipitation and cloud feature database: Description version 1.0. Dept. of Meteorology Rep., University of Utah, 22 pp. [Available online at http://trmm.chpc.utah.edu/docs/trmm_database_description_v1.0.pdf.]

  • Liu, C., , E. J. Zipser, , D. J. Cecil, , S. W. Nesbitt, , and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728, doi:10.1175/2008JAMC1890.1.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., , H. Wang, , R. Zhang, , W. Qian, , and Z. Luo, 2013: Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over South China and the Yangtze and Huai River basin. J. Climate, 26, 110132, doi:10.1175/JCLI-D-12-00100.1.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., , M. Uliasz, , and T. E. Nelson, 1998: Large peak current cloud-to-ground lightning flashes during the summer months in the contiguous United States. Mon. Wea. Rev., 126, 22172233, doi:10.1175/1520-0493(1998)126<2217:LPCCTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ma, M., , S. Tao, , B. Zhu, , and W. Lu, 2005: Climatological distribution of lightning density observed by satellites in China and its circumjacent regions. Sci. China, 48D, 219229, doi:10.1360/03yd0204.

    • Search Google Scholar
    • Export Citation
  • Mazarakis, N., , V. Kotroni, , K. Lagouvardos, , and A. A. Argiriou, 2008: Storms and lightning activity in Greece during the warm periods of 2003–06. J. Appl. Meteor. Climatol., 47, 30893098, doi:10.1175/2008JAMC1798.1.

    • Search Google Scholar
    • Export Citation
  • Meng, W., , J. Yan, , and H. Hu, 2007: Possible impact of urbanization on severe thunderstorms over Pearl River delta. Chin. J. Atmos. Sci., 31, 364376.

    • Search Google Scholar
    • Export Citation
  • Meng, W., , H. Li, , Y. Zhang, , G. Dai, , and Q. Wan, 2012: A modeling study of the impacts of Pearl River delta urban environment on convective precipitation. Chin. J. Atmos. Sci., 36, 10631076.

    • Search Google Scholar
    • Export Citation
  • Meng, W., , Y. Zheng, , B. Wang, , Y. Zhang, , D. Jiang, , J. Yuan, , and C. Luo, 2014: Observational and numerical study of impacts of interactions between heat island and sea-breeze on the late-afternoon severe precipitation over Pearl River Delta. J. Trop. Meteor., 30, 10111026.

    • Search Google Scholar
    • Export Citation
  • Nag, A., and et al. , 2011: Evaluation of U.S. National Lightning Detection Network performance characteristics using rocket-triggered lightning data acquired in 2004–2009. J. Geophys. Res., 116, D02123, doi:10.1029/2010JD014929.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., , and G. R. Huffines, 1999: Lightning ground flash measurements over the contiguous United States: 1995–97. Mon. Wea. Rev., 127, 26932703, doi:10.1175/1520-0493(1999)127<2693:LGFMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., , and G. R. Huffines, 2001: Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Mon. Wea. Rev., 129, 11791193, doi:10.1175/1520-0493(2001)129<1179:CTGLIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., , G. R. Huffines, , W. R. Burrows, , R. L. Holle, , and K. L. Cummins, 2002: The North American Lightning Detection Network (NALDN)—First results: 1998–2000. Mon. Wea. Rev., 130, 20982109, doi:10.1175/1520-0493(2002)130<2098:TNALDN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., , G. R. Huffines, , W. R. Burrows, , and K. L. Cummins, 2011: The North American Lightning Detection Network (NALDN)— Analysis of flash data: 2001–09. Mon. Wea. Rev., 139, 13051322, doi:10.1175/2010MWR3452.1.

    • Search Google Scholar
    • Export Citation
  • Petersen, D., , M. Bailey, , W. H. Beasley, , and J. Hallett, 2008: A brief review of the problem of lightning initiation and a hypothesis of initial lightning leader formation. J. Geophys. Res., 113, D17205, doi:10.1029/2007JD009036.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., , and S. A. Rutledge, 1992: Some characteristics of cloud-to-ground lightning in tropical northern Australia. J. Geophys. Res., 97, 11 55311 560, doi:10.1029/92JD00798.

    • Search Google Scholar
    • Export Citation
  • Pinto, O., Jr., , K. P. Naccarato, , I. R. C. A. Pinto, , W. A. Fernandes, , and O. P. Neto, 2006: Monthly distribution of cloud-to-ground lightning flashes as observed by lightning location systems. Geophys. Res. Lett., 33, L09811, doi:10.1029/2006GL026081.

    • Search Google Scholar
    • Export Citation
  • Pinto, O., Jr., , I. R. C. A. Pinto, , D. R. de Campos, , and K. P. Naccarato, 2009: Climatology of large peak current cloud-to-ground lightning flashes in southeastern Brazil. J. Geophys. Res., 114, D16105, doi:10.1029/2009JD012029.

    • Search Google Scholar
    • Export Citation
  • Qie, X., , R. Toumi, , and T. Yuan, 2003: Lightning activities on the Tibetan Plateau as observed by the Lightning Imaging Sensor. J. Geophys. Res., 108, 4551, doi:10.1029/2002JD003304.

    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., , and H. E. Fuelberg, 2010: Pre- and postupgrade distributions of NLDN reported cloud-to-ground lightning characteristics in the contiguous United States. Mon. Wea. Rev., 138, 36233633, doi:10.1175/2010MWR3283.1.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., , and D. R. MacGorman, 1988: Cloud-to-ground lightning in the 10–11 June 1985 mesoscale convective system observed during the Oklahoma–Kansas PRE-STORM project. Mon. Wea. Rev., 116, 13931408, doi:10.1175/1520-0493(1988)116<1393:CTGLAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., , C. Lu, , and D. R. MacGorman, 1990: Positive cloud-to-ground lightning in mesoscale convective systems. J. Atmos. Sci., 47, 20852100, doi:10.1175/1520-0469(1990)047<2085:PCTGLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., , E. R. Williams, , and W. A. Petersen, 1993: Lightning and electrical structure of mesoscale convective systems. Atmos. Res., 29, 2753, doi:10.1016/0169-8095(93)90036-N.

    • Search Google Scholar
    • Export Citation
  • Said, R. K., , M. B. Cohen, , and U. S. Inan, 2013: Highly intense lightning over the oceans: Estimated peak currents from global GLD360 observations. J. Geophys. Res. Atmos., 118, 69056915, doi:10.1002/jgrd.50508.

    • Search Google Scholar
    • Export Citation
  • Seity, Y., , S. Soula, , and H. Sauvageot, 2001: Lightning and precipitation relationship in coastal thunderstorms. J. Geophys. Res., 106, 22 80122 816, doi:10.1029/2001JD900244.

    • Search Google Scholar
    • Export Citation
  • Soriano, L. R., , F. de Pablo, , and E. G. Diez, 2001: Cloud-to-ground lightning activity in the Iberian Peninsula: 1992–1994. J. Geophys. Res., 106, 11 89111 901, doi:10.1029/2001JD900055.

    • Search Google Scholar
    • Export Citation
  • Steiger, S. M., , and R. E. Orville, 2003: Cloud-to-ground lightning enhancement over southern Louisiana. Geophys. Res. Lett., 30, 1975, doi:10.1029/2003GL017923.

    • Search Google Scholar
    • Export Citation
  • Tyahla, L. J., , and R. E. Lopez, 1994: Effect of surface conductivity on the peak magnetic field radiated by first return strokes in cloud-to-ground lightning. J. Geophys. Res., 99, 10 51710 525, doi:10.1029/94JD00384.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , W. Chen, , and J. Liu, 2009: Temporal and spatial distributions of lightning activity in south of China from TRMM satellite observation (in Chinese). J. Trop. Meteor., 25, 227233.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , Q. Wan, , W. Meng, , F. Liao, , H. Tan, , and R. Zhang, 2011: Long-term impacts of aerosols on precipitation and lightning over the Pearl River delta megacity area in China. Atmos. Chem. Phys., 11, 12 42112 436, doi:10.5194/acp-11-12421-2011.

    • Search Google Scholar
    • Export Citation
  • Williams, E., , and S. Stanfill, 2002: The physical origin of the land–ocean contrast in lightning activity. C. R. Phys., 3, 12771292, doi:10.1016/S1631-0705(02)01407-X.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and et al. , 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107, 8082, doi:10.1029/2001JD000380.

    • Search Google Scholar
    • Export Citation
  • Williams, E., , T. Chan, , and D. Boccippio, 2004: Islands as miniature continents: Another look at the land-ocean lightning contrast. J. Geophys. Res., 109, D16206, doi:10.1029/2003JD003833.

    • Search Google Scholar
    • Export Citation
  • Wu, X., , X. Xiu, , and Y. Tie, 2013: Regional distribution and diurnal variation of deep convective systems over the Asian monsoon region. Sci. China Earth Sci., 56, 843854, doi:10.1007/s11430-012-4551-8.

    • Search Google Scholar
    • Export Citation
  • Xu, W., 2013: Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM. Mon. Wea. Rev., 141, 15771592, doi:10.1175/MWR-D-12-00177.1.

    • Search Google Scholar
    • Export Citation
  • Xu, W., , E. J. Zipser, , and C. Liu, 2009: Rainfall characteristics and convective properties of mei-yu precipitation systems over South China, Taiwan, and the South China Sea. Part I: TRMM observations. Mon. Wea. Rev., 137, 42614275, doi:10.1175/2009MWR2982.1.

    • Search Google Scholar
    • Export Citation
  • Yang, S., , and E. A. Smith, 2006: Mechanisms for diurnal variation of global tropical rainfall observed from TRMM. J. Climate, 19, 51905226, doi:10.1175/JCLI3883.1.

    • Search Google Scholar
    • Export Citation
  • Yang, X., , J. Sun, , and W. Li, 2015: An analysis of cloud-to-ground lightning in China during 2010–13. Wea. Forecasting, 30, 15371550, doi:10.1175/WAF-D-14-00132.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., , X. Liu, , Y. Zhang, , L. Fang, , D. Zhong, , and L. Zhou, 2000: Preliminary study on climatological distributions of lightning flash in Guangdong (in Chinese). J. Trop. Meteor., 16, 4653.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., , Q. Meng, , M. Ma, , and Y. Zhang, 2011: Lightning casualties and damages in China from 1997 to 2009. Nat. Hazards, 57, 465476, doi:10.1007/s11069-010-9628-0.

    • Search Google Scholar
    • Export Citation
  • Zheng, D., , and D. R. MacGorman, 2016: Characteristics of flash initiations in a supercell cluster with tornadoes. Atmos. Res., 167, 249264, doi:10.1016/j.atmosres.2015.08.015.

    • Search Google Scholar
    • Export Citation
  • Zheng, D., , Y. Zhang, , Q. Meng, , W. Lu, , and M. Zhong, 2010: Lightning activity and electrical structure in a thunderstorm that continued for more than 24 h. Atmos. Res., 97, 241256, doi:10.1016/j.atmosres.2010.04.011.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., , and J. Cheng, 2011: A climatology of deep convection over south China and adjacent seas during summer (in Chinese). J. Trop. Meteor., 27, 495508.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., , C. T. Liu, , D. J. Cecil, , S. W. Nesbitt, , and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, doi:10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 81 81 4
PDF Downloads 54 54 8

Climatological Comparison of Small- and Large-Current Cloud-to-Ground Lightning Flashes over Southern China

View More View Less
  • 1 State Key Laboratory of Severe Weather, and Laboratory of Lightning Physics and Protection Engineering, Chinese Academy of Meteorological Sciences, Beijing, China
  • | 2 Lightning Protection Center of Guangdong Province, Guangzhou, China
  • | 3 Conghua Meteorological Bureau, Guangzhou, China
© Get Permissions
Restricted access

Abstract

The first climatological comparison of small-current cloud-to-ground (SCCG; peak current ≤50 kA) and large-current cloud-to-ground (LCCG; peak current >50 kA, >75 kA, and >100 kA) lightning flashes is presented for southern China. The LCCG lightning exhibits an apparent preference to occur over the sea. The percentage of positive LCCG lightning during the nonrainy season was more than twice that during the rainy season, while the percentage of positive SCCG lightning showed small seasonal differences. Positive cloud-to-ground (PCG) lightning was more likely to feature a large peak current than was negative cloud-to-ground (NCG) lightning, especially during the nonrainy season and over land. Distinct geographical differences are found between SCCG and LCCG lightning densities and between their own positive and negative discharges. Furthermore, the percentages of positive lightning from LCCG and SCCG lightning exhibit distinctly different geographical and seasonal (rain and nonrainy season) distributions. The diurnal variations in SCCG and LCCG lightning are clearly different over the sea but similar over land. Diurnal variations in the percentage of positive lightning are functions of the peak current and underlying Earth’s surface. In combination with the University of Utah precipitation feature (PF) dataset, it is revealed that thunderstorms with relatively weak convection and large precipitation areas are more likely to produce the LCCG lightning, and the positive LCCG lightning is well correlated with mesoscale convective systems in the spatial distribution during nonrainy season.

Corresponding author address: Dong Zheng, Chinese Academy of Meteorological Sciences, No. 46 Zhongguancun South Street, Beijing 100081, China. E-mail: zhd@camscma.cn

Abstract

The first climatological comparison of small-current cloud-to-ground (SCCG; peak current ≤50 kA) and large-current cloud-to-ground (LCCG; peak current >50 kA, >75 kA, and >100 kA) lightning flashes is presented for southern China. The LCCG lightning exhibits an apparent preference to occur over the sea. The percentage of positive LCCG lightning during the nonrainy season was more than twice that during the rainy season, while the percentage of positive SCCG lightning showed small seasonal differences. Positive cloud-to-ground (PCG) lightning was more likely to feature a large peak current than was negative cloud-to-ground (NCG) lightning, especially during the nonrainy season and over land. Distinct geographical differences are found between SCCG and LCCG lightning densities and between their own positive and negative discharges. Furthermore, the percentages of positive lightning from LCCG and SCCG lightning exhibit distinctly different geographical and seasonal (rain and nonrainy season) distributions. The diurnal variations in SCCG and LCCG lightning are clearly different over the sea but similar over land. Diurnal variations in the percentage of positive lightning are functions of the peak current and underlying Earth’s surface. In combination with the University of Utah precipitation feature (PF) dataset, it is revealed that thunderstorms with relatively weak convection and large precipitation areas are more likely to produce the LCCG lightning, and the positive LCCG lightning is well correlated with mesoscale convective systems in the spatial distribution during nonrainy season.

Corresponding author address: Dong Zheng, Chinese Academy of Meteorological Sciences, No. 46 Zhongguancun South Street, Beijing 100081, China. E-mail: zhd@camscma.cn
Save