• Bellomo, K., , A. Clement, , T. Mauritsen, , G. Rädel, , and B. Stevens, 2014: Simulating the role of subtropical stratocumulus clouds in driving Pacific climate variability. J. Climate, 27, 51195131, doi:10.1175/JCLI-D-13-00548.1.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., , K. M. Shell, , P. R. Gent, , D. A. Bailey, , G. Danabasoglu, , K. C. Armour, , M. M. Holland, , and J. T. Kiehl, 2012: Climate sensitivity of the Community Climate System Model, version 4. J. Climate, 25, 30533070, doi:10.1175/JCLI-D-11-00290.1.

    • Search Google Scholar
    • Export Citation
  • Blackburn, M., and et al. , 2013: The Aqua-Planet Experiment (APE): Control SST simulation. J. Meteor. Soc. Japan, 91A, 1756, doi:10.2151/jmsj.2013-A02.

    • Search Google Scholar
    • Export Citation
  • Chang, P., , L. Ji, , and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature, 385, 516518, doi:10.1038/385516a0.

    • Search Google Scholar
    • Export Citation
  • Chang, P., , L. Zhang, , R. Saravanan, , D. J. Vimont, , J. C. H. Chiang, , L. Ji, , H. Seidel, , and M. K. Tippett, 2007: Pacific meridional mode and El Niño–Southern Oscillation. Geophys. Res. Lett., 34, L16608, doi:10.1029/2007GL030302.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., , and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, doi:10.1175/JCLI4953.1.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., , and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477496, doi:10.1007/s00382-005-0040-5.

    • Search Google Scholar
    • Export Citation
  • Computational and Information Systems Laboratory, 2013: Yellowstone: IBM iDataPlex System (NCAR Community Computing). National Center for Atmospheric Research. [Available online at http://n2t.net/ark:/85065/d7wd3xhc.]

  • de Szoeke, S. P., , S.-P. Xie, , T. Miyama, , K. J. Richards, , and R. J. O. Small, 2007: What maintains the SST front north of the eastern Pacific equatorial cold tongue? J. Climate, 20, 25002514, doi:10.1175/JCLI4173.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., , and S.-P. Xie, 2008: Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys. Res. Lett., 35, L08712, doi:10.1029/2008GL033631.

    • Search Google Scholar
    • Export Citation
  • Enderton, D., , and J. Marshall, 2009: Explorations of atmosphere–ocean–ice climates on an aquaplanet and their meridional energy transports. J. Atmos. Sci., 66, 15931611, doi:10.1175/2008JAS2680.1.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., , R. Allen, , R. Bennartz, , and D. J. Vimont, 2013: The modification of sea surface temperature anomaly linear damping time scales by stratocumulus clouds. J. Climate, 26, 36193630, doi:10.1175/JCLI-D-12-00370.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P., and et al. , 2011: The Community Climate System Model, version 4. J. Climate, 24, 49734991, doi:10.1175/2011JCLI4083.1.

  • Hurrell, W. J., and et al. , 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Inatsu, M., , H. Mukougawa, , and S.-P. Xie, 2002: Stationary eddy response to surface boundary forcing: Idealized GCM experiments. J. Atmos. Sci., 59, 18981915, doi:10.1175/1520-0469(2002)059<1898:SERTSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, D., , and B. P. Kirtman, 2009: Why the Southern Hemisphere ENSO responses lead ENSO. J. Geophys. Res., 114, D23101, doi:10.1029/2009JD012657.

    • Search Google Scholar
    • Export Citation
  • Kang, S. M., , I. M. Held, , D. M. W. Frierson, , and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, doi:10.1175/2007JCLI2146.1.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., , and S. Manabe, 1995: Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J. Climate, 8, 21812199, doi:10.1175/1520-0442(1995)008<2181:TMROTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , and D. J. Vimont, 2007: A more general framework for understanding Atlantic hurricane variability and trends. Bull. Amer. Meteor. Soc., 88, 17671781, doi:10.1175/BAMS-88-11-1767.

    • Search Google Scholar
    • Export Citation
  • Larson, S., , and B. P. Kirtman, 2013: The Pacific meridional mode as a trigger for ENSO in a high-resolution coupled model. Geophys. Res. Lett., 40, 31893194, doi:10.1002/grl.50571.

    • Search Google Scholar
    • Export Citation
  • Larson, S., , and B. P. Kirtman, 2014: The Pacific meridional mode as an ENSO precursor and predictor in the North American Multimodel Ensemble. J. Climate, 27, 70187032, doi:10.1175/JCLI-D-14-00055.1.

    • Search Google Scholar
    • Export Citation
  • Leloup, J., , and A. Clement, 2009: Why is there a minimum in projected warming in the tropical North Atlantic Ocean? Geophys. Res. Lett., 36, L14802, doi:10.1029/2009GL038609.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., , and S.-P. Xie, 1994: Equatorward propagation of coupled air–sea disturbances with application to the annual cycle of the eastern tropical Pacific. J. Atmos. Sci., 51, 38073822, doi:10.1175/1520-0469(1994)051<3807:EPOCAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , A. Donohoe, , D. Ferreira, , and D. McGee, 2014: The ocean’s role in setting the mean position of the inter-tropical convergence zone. Climate Dyn., 42, 19671979, doi:10.1007/s00382-013-1767-z.

    • Search Google Scholar
    • Export Citation
  • Medeiros, B., , B. Stevens, , and S. Bony, 2015: Using aquaplanets to understand the robust responses of comprehensive climate models to forcing. Climate Dyn., 44, 19571977, doi:10.1007/s00382-014-2138-0.

    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., , and T. Schneider, 2011: Changes in zonal surface temperature gradients and Walker circulations in a wide range of climates. J. Climate, 24, 47574768, doi:10.1175/2011JCLI4042.1.

    • Search Google Scholar
    • Export Citation
  • Nakajima, K., , Y. Yamada, , Y. O. Takahashi, , M. Ishiwatari, , W. Ohfuchi, , and Y.-Y. Hayashi, 2013: The variety of forced atmospheric structure in response to tropical SST anomaly in the Aqua-Planet Experiments. J. Meteor. Soc. Japan, 91A, 143193, doi:10.2151/jmsj.2013-A05.

    • Search Google Scholar
    • Export Citation
  • Nnamchi, H., , J. Li, , F. Kucharski, , I. Kang, , N. S. Keenlyside, , P. Chang, , and R. Farneti, 2015: Thermodynamic controls of the Atlantic Niño. Nat. Commun., 6, 8895, doi:10.1038/ncomms9895.

    • Search Google Scholar
    • Export Citation
  • Nobre, P., , and J. Shukla, 1996: Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Climate, 9, 24642479, doi:10.1175/1520-0442(1996)009<2464:VOSSTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • North, G. R., , T. L. Bell, , R. F. Cahalan, , and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., 2013: Origins of tropical Pacific decadal variability: Role of stochastic atmospheric forcing from the South Pacific. J. Climate, 26, 97919796, doi:10.1175/JCLI-D-13-00448.1.

    • Search Google Scholar
    • Export Citation
  • Park, S., , C. Deser, , and M. A. Alexander, 2005: Estimation of the surface heat flux response to sea surface temperature anomalies over the global oceans. J. Climate, 18, 45824599, doi:10.1175/JCLI3521.1.

    • Search Google Scholar
    • Export Citation
  • Richter, I., , and S.-P. Xie, 2008: Muted precipitation increase in global warming simulations: A surface evaporation perspective. J. Geophys. Res., 113, D24118, doi:10.1029/2008JD010561.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., 2010: Transient growth of thermodynamically coupled disturbances in the tropics under an equatorially symmetric mean state. J. Climate, 23, 57715789, doi:10.1175/2010JCLI3532.1.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., , and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34, L07709, doi:10.1029/2007GL029683.

    • Search Google Scholar
    • Export Citation
  • Wang, F., 2010: Thermodynamic coupled modes in the tropical atmosphere–ocean: An analytical solution. J. Atmos. Sci., 67, 16671677, doi:10.1175/2009JAS3262.1.

    • Search Google Scholar
    • Export Citation
  • Williamson, D., and et al. , 2012: The APE atlas. NCAR Tech. Note NCAR/TN-484+STR, 508 pp., doi:10.5065/D6FF3QBR.

  • Wu, R., , B. P. Kirtman, , and V. Krishnamurthy, 2008: An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J. Geophys. Res., 113, D05104, doi:10.1029/2007JD009316.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , and S. G. H. Philander, 1994: A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46A, 340350, doi:10.1034/j.1600-0870.1994.t01-1-00001.x.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., , A. Clement, , and P. DiNezio, 2014a: The South Pacific meridional mode: A mechanism for ENSO-like variability. J. Climate, 27, 769783, doi:10.1175/JCLI-D-13-00082.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., , C. Deser, , A. Clement, , and R. Tomas, 2014b: Equatorial signatures of the Pacific meridional modes: Dependence on mean climate state. Geophys. Res. Lett., 41, 568574, doi:10.1002/2013GL058842.

    • Search Google Scholar
    • Export Citation
  • Zhou, Z., , and J. A. Carton, 1998: Latent heat flux and interannual variability of the coupled atmosphere–ocean system. J. Atmos. Sci., 55, 494501, doi:10.1175/1520-0469(1998)055<0494:LHFAIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 88 88 6
PDF Downloads 17 17 3

The Meridional Mode in an Idealized Aquaplanet Model: Dependence on the Mean State

View More View Less
  • 1 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 2 National Center for Atmospheric Research,* Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The meridional mode provides a source of predictability for the tropical climate variability and change on seasonal and longer time scales by transporting extratropical climate signals into the tropics. Previous research shows that the tropical imprint of the meridional mode is constrained by the interhemispheric asymmetry of the tropical mean climate state. In this study the constraint of the zonal asymmetry is investigated in an AGCM thermodynamically coupled with an aquaplanet slab ocean model. The strategy is to modify the zonal asymmetry of the mean climate state and examine the response of the meridional mode. Presented here are two simulations of different zonal asymmetries in the mean state. In the zonally symmetric case, the meridional mode operates throughout the subtropics but only becomes evident after removing a dominant global-scale eastward-propagating mode. In the zonally asymmetric case, the meridional mode operates only in regions where trade winds converge onto the equator and has an enlarged spatial scale due to the modified mean climate including cold sea surface and weak trade winds. In both simulations, the tropical imprint of the meridional mode is constrained by the north–south seasonal migration of the intertropical convergence zone. These results suggest that the meridional mode does not require the zonal asymmetry of the mean state but is intrinsic to the subtropical ocean–atmosphere coupled system with its characteristics subject to the mean climate state. The implication is that the internal climate variability needs to be assessed in the context of the mean climate state.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: H. Zhang, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: hzhang@rsmas.miami.edu

Abstract

The meridional mode provides a source of predictability for the tropical climate variability and change on seasonal and longer time scales by transporting extratropical climate signals into the tropics. Previous research shows that the tropical imprint of the meridional mode is constrained by the interhemispheric asymmetry of the tropical mean climate state. In this study the constraint of the zonal asymmetry is investigated in an AGCM thermodynamically coupled with an aquaplanet slab ocean model. The strategy is to modify the zonal asymmetry of the mean climate state and examine the response of the meridional mode. Presented here are two simulations of different zonal asymmetries in the mean state. In the zonally symmetric case, the meridional mode operates throughout the subtropics but only becomes evident after removing a dominant global-scale eastward-propagating mode. In the zonally asymmetric case, the meridional mode operates only in regions where trade winds converge onto the equator and has an enlarged spatial scale due to the modified mean climate including cold sea surface and weak trade winds. In both simulations, the tropical imprint of the meridional mode is constrained by the north–south seasonal migration of the intertropical convergence zone. These results suggest that the meridional mode does not require the zonal asymmetry of the mean state but is intrinsic to the subtropical ocean–atmosphere coupled system with its characteristics subject to the mean climate state. The implication is that the internal climate variability needs to be assessed in the context of the mean climate state.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: H. Zhang, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149. E-mail: hzhang@rsmas.miami.edu
Save