• Baldwin, M. P., , and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 93730 946, doi:10.1029/1999JD900445.

    • Search Google Scholar
    • Export Citation
  • Barnes, E., , and E. Dunn-Sigouin, 2014: Exploring recent trends in Northern Hemisphere blocking. Geophys. Res. Lett., 41, 638644, doi:10.1002/2013GL058745.

    • Search Google Scholar
    • Export Citation
  • Cohen, J. L., , J. C. Furtado, , M. A. Barlow, , V. A. Alexeev, , and J. E. Cherry, 2012: Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett., 7, 014007, doi:10.1088/1748-9326/7/1/014007.

    • Search Google Scholar
    • Export Citation
  • Cohen, J. L., and et al. , 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, doi:10.1038/ngeo2234.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deser, C., , R. A. Tomas, , and S. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20, 47514767, doi:10.1175/JCLI4278.1.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., , J. M. Wallace, , D. S. Battisti, , E. J. Steig, , A. J. E. Gallant, , H.-J. Kim, , and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509, 209212, doi:10.1038/nature13260.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., , and S. Lee, 2014: Intraseasonal and interdecadal jet shifts in the Northern Hemisphere: The role of warm pool tropical convection and sea ice. J. Climate, 27, 64976518, doi:10.1175/JCLI-D-14-00057.1.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., , and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in the mid-latitudes. Geophys. Res. Lett., 39, L06801, doi:10.1029/2012GL051000.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., , D. L. Hartmann, , and F. Sassi, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 32823299, doi:10.1175/2010JCLI3010.1.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., , S. Unkel, , N. T. Trendafilov, , and I. T. Jolliffe, 2009: Independent component analysis of climate data: A new look at EOF rotation. J. Climate, 22, 27972812, doi:10.1175/2008JCLI2571.1.

    • Search Google Scholar
    • Export Citation
  • Howe, P. D., , E. M. Markowitz, , T. M. Lee, , C.-Y. Ko, , and A. Leiserowitz, 2012: Global perceptions of local temperature change. Nat. Climate Change, 3, 352356, doi:10.1038/nclimate1768.

    • Search Google Scholar
    • Export Citation
  • Hyvärinen, A., 2013: Independent component analysis: Recent advances. Philos. Trans. Roy. Soc. London, 371A, 20110534, doi:10.1098/rsta.2011.0534.

    • Search Google Scholar
    • Export Citation
  • Hyvärinen, A., , and E. Oja, 2000: Independent component analysis: Algorithms and applications. Neural Networks, 13, 411430, doi:10.1016/S0893-6080(00)00026-5.

    • Search Google Scholar
    • Export Citation
  • Jaiser, R., , K. Dethloff, , and D. Handorf, 2013: Stratospheric response to Arctic sea ice retreat and associated planetary wave propagation changes. Tellus, 65A, 19375, doi:10.3402/tellusa.v65i0.19375.

    • Search Google Scholar
    • Export Citation
  • Jennrich, R. I., , and N. T. Trendafilov, 2005: Independent component analysis as a rotation method: A very different solution to Thurstone’s box problem. Br. J. Math. Stat. Psychol., 58, 199208, doi:10.1348/000711005X64105.

    • Search Google Scholar
    • Export Citation
  • Jin, F., , and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319, doi:10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., , S.-W. Son, , S.-K. Min, , J.-H. Jeong, , S.-J. Kim, , X. Zhang, , T. Shim, , and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, doi:10.1038/ncomms5646.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., , and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, doi:10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R., , M. Wensnahan, , A. Schweiger, , and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, doi:10.1175/JCLI-D-13-00014.1.

    • Search Google Scholar
    • Export Citation
  • Mann, H. B., 1945: Non-parametric tests against trend. Econometrica, 13, 245259, doi:10.2307/1907187.

  • Manzini, E., , M. Giorgetta, , M. Esch, , L. Kornblueh, , and E. Roeckner, 2006: The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Climate, 19, 38633881, doi:10.1175/JCLI3826.1.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 22, 14791494, doi:10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miles, M. K., 1961: Factors associated with the formation and persistence of anticyclones over Scandinavia in the winter half of the year. Met Office Scientific Paper 8, 19 pp.

  • Mori, M., , M. Watanabe, , H. Shiogama, , J. Inoue, , and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, doi:10.1038/ngeo2277.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., , and M. Wang, 2010: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus, 62A, 19, doi:10.1111/j.1600-0870.2009.00421.x.

    • Search Google Scholar
    • Export Citation
  • Peings, Y., , and G. Magnusdottir, 2014: Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic Ocean. Environ. Res. Lett., 9, 034018, doi:10.1088/1748-9326/9/3/034018.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., , M. Hoerling, , and R. Dole, 2015: Arctic tropospheric warming: Causes and linkages to lower latitudes. J. Climate, 28, 21542167, doi:10.1175/JCLI-D-14-00095.1.

    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., , and V. A. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, doi:10.1029/2009JD013568.

    • Search Google Scholar
    • Export Citation
  • Runge, J., , V. Petoukhov, , and J. Kurths, 2014: Quantifying the strength and delay of climatic interactions: The ambiguities of cross correlation and a novel measure based on graphical models. J. Climate, 27, 720739, doi:10.1175/JCLI-D-13-00159.1.

    • Search Google Scholar
    • Export Citation
  • Sato, K., , J. Inoue, , and M. Watanabe, 2014: Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter. Environ. Res. Lett., 9, 084009, doi:10.1088/1748-9326/9/8/084009.

    • Search Google Scholar
    • Export Citation
  • Screen, J., , I. Simmonds, , C. Deser, , and R. Tomas, 2013: The atmospheric response to three decades of observed Arctic Sea ice loss. J. Climate, 26, 12301248, doi:10.1175/JCLI-D-12-00063.1.

    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, doi:10.1080/01621459.1968.10480934.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., , A. P. Barrett, , and J. Stroeve, 2012: Recent changes in tropospheric water vapor over the Arctic as assessed from radiosondes and atmospheric reanalyses. J. Geophys. Res., 117, D10104, doi:10.1029/2011JD017421.

    • Search Google Scholar
    • Export Citation
  • Smedsrud, L. H., , I. Esau, , R. B. Ingvaldsen, , T. Eldevik, , P. M. Haugan, , C. Li, , and S. A. Sorokina, 2013: The role of the Barents Sea in the Arctic climate system. Rev. Geophys., 51, 415449, doi:10.1002/rog.20017.

    • Search Google Scholar
    • Export Citation
  • Thompson, D., , and J. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, doi:10.1029/98GL00950.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and J. T. Fasullo, 2013: An apparent hiatus in global warming? Earth’s Future, 1, 1932, doi:10.1002/2013EF000165.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , J. T. Fasullo, , G. Branstator, , and A. S. Phillips, 2014: Seasonal aspects of the recent pause in surface warming. Nat. Climate Change, 4, 911916, doi:10.1038/nclimate2341.

    • Search Google Scholar
    • Export Citation
  • Vinnikov, K. Y., , N. C. Grody, , A. Robock, , R. J. Stouffer, , P. D. Jones, , and M. D. Goldberg, 2006: Temperature trends at the surface and in the troposphere. J. Geophys. Res., 111, D03106, doi:10.1029/2005JD006392.

    • Search Google Scholar
    • Export Citation
  • Walker, G. T., 1924: Correlation of seasonal variations in weather, IX: A further study of the world weather. Mem. India Meteor. Dep., 24, 275332.

    • Search Google Scholar
    • Export Citation
  • Walker, G. T., , and E. W. Bliss, 1932: World weather V. Mem. Roy. Meteor. Soc., 4, 5383.

  • Wallace, J., , E. M. Rasmusson, , T. P. Mitchell, , V. E. Kousky, , E. S. Sarachik, , and H. von Storch, 1998: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA. J. Geophys. Res., 103, 14 24114 259, doi:10.1029/97JC02905.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 101 101 18
PDF Downloads 51 51 11

Large-Scale Atmospheric Warming in Winter and the Arctic Sea Ice Retreat

View More View Less
  • 1 European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy
  • | 2 European Commission, Joint Research Centre, Institute for the Protection and Security of the Citizen, Ispra, Italy
© Get Permissions
Restricted access

Abstract

The ongoing shrinkage of the Arctic sea ice cover is likely linked to the global temperature rise, the pronounced warming in the Arctic, and possibly weather anomalies in the midlatitudes. By evaluating independent components of global atmospheric energy anomalies in winters from 1980 to 2015, the study finds the link between the sea ice melting in the Arctic and the combination of only three well-known atmospheric oscillation patterns approximating observed spatial variations of near-surface temperature trends in winter. The three patterns are the North Atlantic Oscillation (NAO), Scandinavian blocking (SB), and El Niño–Southern Oscillation (ENSO). The first two are directly related to the ongoing sea ice cover shrinkage in the Barents Sea and the hemispheric increase of near-surface temperature. By independent dynamical processes they connect the sea ice melting and related atmospheric perturbations in the Arctic either with the negative phase of the NAO or the negative trend of atmospheric temperatures over the tropical Pacific. The study further shows that the ongoing sea ice melting may often imply the formation of large-scale circulation patterns bringing the recent trend of colder winters in densely populated areas like Europe and North America.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0417.s1.

Corresponding author address: Srdjan Dobricic, Joint Research Centre, TP124, Via Enrico Fermi 2749, 20127 Ispra, Italy. E-mail: srdan.dobricic@jrc.ec.europa.eu

Abstract

The ongoing shrinkage of the Arctic sea ice cover is likely linked to the global temperature rise, the pronounced warming in the Arctic, and possibly weather anomalies in the midlatitudes. By evaluating independent components of global atmospheric energy anomalies in winters from 1980 to 2015, the study finds the link between the sea ice melting in the Arctic and the combination of only three well-known atmospheric oscillation patterns approximating observed spatial variations of near-surface temperature trends in winter. The three patterns are the North Atlantic Oscillation (NAO), Scandinavian blocking (SB), and El Niño–Southern Oscillation (ENSO). The first two are directly related to the ongoing sea ice cover shrinkage in the Barents Sea and the hemispheric increase of near-surface temperature. By independent dynamical processes they connect the sea ice melting and related atmospheric perturbations in the Arctic either with the negative phase of the NAO or the negative trend of atmospheric temperatures over the tropical Pacific. The study further shows that the ongoing sea ice melting may often imply the formation of large-scale circulation patterns bringing the recent trend of colder winters in densely populated areas like Europe and North America.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-0417.s1.

Corresponding author address: Srdjan Dobricic, Joint Research Centre, TP124, Via Enrico Fermi 2749, 20127 Ispra, Italy. E-mail: srdan.dobricic@jrc.ec.europa.eu

Supplementary Materials

    • Supplemental Materials (DOCX 8.70 MB)
Save